Name:	

Class: ____ Date: ____

A Microscopic Investigation of Internal Forces

Learner Outcomes:

- Identify points of failure and modes of failure in natural and built structures
- Identify tension, compression, shearing and bending forces within a structure; and describe how these forces can cause the structure to fail

Key Terms:

Internal Forces	Compression
External Forces	Shear
Tension	Buckle

Twist Metal Fatigue Torsion

Background Information:

No structure or material is perfect. If a great enough force acts on a structure, it will begin to fail. Even before complete failure, a material will show stresses that are unique to the type of internal force that has been exerted on a material. A microscope can aid the human eye in detecting stresses before complete failure occurs. For comparison, a negative control (a material that has had nothing done to it) can be used to better understand results.

Research question: How do different types of internal forces and stresses affect the structure of a variety of stir sticks?

Hypothesis: If different stir sticks are stressed in different ways, then the structure of the stick will be deformed in a manner that can be observed with a microscope.

Materials:

Stir sticks (5) beaker (400ml) beaker tongs hotplate microscope iodine

Safety Precautions: Care must be exercised with the iodine solution as it is a poison. Basic care must be taken not to injure oneself during the experiment.

Procedure:

- 1. Place 5 stir sticks into the 400 mL beaker.
- 2. Add 5 ml of iodine solution.
- 3. Fill the beaker with 300ml of water.
- 4. Heat the beaker to the boiling point.
- 5. Remove the beaker from the heat and let it sit overnight.
- 6. Perform each of the designated tests for tensile strength, torsion, shear, and compression. Describe how each stress was applied
- 7. Using the dissection microscope, observe the damage inflicted upon each of the stir sticks.
- 8. Record the results in the form of a drawing, and record the image of a 5^{th} , undamaged, stir stick (the control).

Stir Stick	Type of Stress	How Stressed	Macroscopic observations	Microscopic observations
1				
2				
3				
4				
5	none			

Observations:

Analysis:

- 1. Why was it necessary to have a control?
- 2. What did the torsion stick look like?
- 3. What did the compression stick look like?
- 4. What did the shear stick look like?
- 5. What did the tension stick look like?
- 6. Which stir stick demonstrated the most damage?
- 7. In general, what does the damage look like microscopically?

Extension:

1. Why would scientists need to study the *microscopic* damage done to building materials?