Name:	Class:	Date:							
Marker Chromatography									
examples - Investigate and i	gst pure substances, mixtures and s dentify factors that affect solubili t (e.g., identify the effect of partic	ity and the rate of dissolving a							
Key Terms: Solution Pure substance	Homogeneous mixture Solubility	Chromatography Solvent							
determine if they are puin a solution. If the flui	n: For some fluids, a paper chroma ire substances or solutions. A piece d is a pure substance it will move up , it will move up the paper to differ	e of filter paper is placed partly p the strip of paper to one level.							
Research Question: Is	the black ink in a marker a pure sub	ostance or a solution?							
Hypothesis:									

Materials:

Chromatography paper Permanent black marker Water

Water soluble markers 250 mL beaker Paper towels

Procedure:

- 1. Collect 3 pieces of chromatography paper and <u>using a pencil</u>, draw a horizontal line 1 cm from the pointed end.
- 2. Along the pencil line, draw a line with the permanant marker on one piece, a line with one colored non-permanent marker on another piece and a line with another colored non-permanent marker on the last piece.
- 3. Attach the chromatography paper to a pencil so that it can hang in your beaker.
- 4. Pour water into the beaker to a depth of 0.5 cm you do not want the ink to touch the water
- 5. Hang your chromatograms so that their points are just touching the water and allow the water to move up as it soaks into the paper.

- 6. When the water is almost at the top of the papers, take them out, place them on a paper towel and allow to dry.
- 7. Attach the dried chromatograms to your lab sheet.

Observations:

<u>Permanent marker</u>			
	l		

An	Analysis:					
1.	Is the ink in the markers considered a solid or a liquid? How do you know?					
2.	What happened to the ink as the water moved up the chromatography paper? Why?					
3.	Would you consider ink to be a pure substance or a mixture? Explain your answer					
4.	Which of your ink samples was made of the greatest number of differently sized molecules? Explain how you can determine this?					
5.	Explain how paper chromatography determines whether you have a pure substance or a mixture?					

6. What happened to the non-permanent marker? Why?

Conclusion:	Explain your	answer the	research	question i	n a short	paragraph.
-------------	--------------	------------	----------	------------	-----------	------------

Extension:

- 1. What other household substances could you test using paper chromatography?
- 2. Research at least 2 other solvents you could use in this experiment, and when it would be appropriate to use them. What are the advantages and disadvantages to using solvents other than water?
- 3. Investigate how chromatography might be used in a forensic analysis.