Name:	Class:	Date:	_
	Conservation of M	ass	
Learner Outcomes:			
 Observe and describe p 	atterns of chemical change b	oy:	
. 3	nce for conservation of mass chniques by which that evide		
Key Terms:			
Conservation of mass	Open system	Closed system	
undergo a change. These proc still include all of the atoms the conservation of mass says tha mass of the products to be the	lucts usually look very different that were present in the react that the cannot be created of the reacta	or destroyed, we would expect t	they
Research Question: How is t	he total mass affected by a	chemical reaction?	
PART A: Mass of Reactants	and Products - A Closed S	ystem	

Materials:

Sodium carbonate solution NaCO_{3 (aq)} Calcium chloride solution CaCl_{2(aq)} 250 ml Erlenmeyer flask Small test tube Stopper for flask Graduated Cylinder Triple Beam Balance

Procedure:

- 1. Pour 20 ml of the sodium carbonate $NaCO_{3 (aq)}$ solution into an Erlenmeyer flask
- 2. Pour 10 ml of calcium chloride $CaCl_{2(aq)}$ solution into a test tube. Carefully dry off the outside of the test tube and gently place it into the flask.
- 3. Seal the flask with a stopper and ensure that the outside of the flask is dry.

This investigation / activity has been adapted from:

Mah K, Martha J, McClelland L, et al. Science in Action 9. Toronto, ON: Addison Wesley.

- 4. Record a qualitative description of the reactants and then determine and record the total mass of the reactants and their containers.
- 5. Invert the flask while firmly holding the stopper.
- 6. Observe the reaction and record a qualitative observation of the reactions. Measure and record the mass of the flask and its contents.

Observations:

Before the Reaction		After the Reaction	
Qualitative Description of the Reactants	Mass of Reactants (g)	Qualitative Description of the Reaction and Products	Mass of Products (g)

Analysis:

- 1. What evidence is there that a chemical reaction has occurred?
- 2. What were the reactants in this chemical reaction?
- 3. Using the reactants you listed, write out a **chemical equation** for the reaction you observed.

(HINT: This is a double replacement reaction - swap the metals (positive charges) to determine the products that formed.)

4.	·	cal name for the products and identify which e lab. Why did you choose the one you did?
5.	What happened to the mass after the reac	tions? Does it agree with your hypothesis?
6.	There was another chemical present in bot part in the reaction. What was this other formulas for each reactant carefully.)	h the flask and test tube, but it did not take chemical? (HINT: look at the chemical
PART	Γ B: Mass of Reactants and Produc	ts - An Open System
	em: How can you explain an apparent differ	
нурот	thesis:	
Mater	rials: Sodium bicarbonate (baking soda) - NaHCO _{3 (s)} Dilute Hydrochloric acid HCl _(aq) 250 ml Beaker	Small test tube Graduated Cylinder Balance

This investigation / activity has been adapted from: Mah K, Martha J, McClelland L, et al. *Science in Action 9*. Toronto, ON: Addison Wesley.

Procedure:

- 1. Pour 20 ml of the hydrochloric acid $HCl_{(aq)}$, into the test tube.
- 2. Measure 2g sodium bicarbonate NaHCO3 (s) and place it in the beaker.
- 3. Record a qualitative description of the reactants and then determine and record the total mass of the reactants and their containers.
- 4. Remove the beaker from the balance. Slowly pour the acid into the beaker.
- 5. Observe the reaction and record a qualitative observation of the reactions.
- 6. Place the test tube back in the beaker and measure and record the mass of the flask and its contents.

Observations:

Before the Reaction		After the Reaction	
Qualitative Description of the Reactants	Mass of Reactants (g)	Qualitative Description of the Reaction and Products	Mass of Products (g)

Analysis:

- 1. What evidence is there that a chemical reaction has occurred?
- 2. What were the reactants in this chemical reaction?

3.	Using the reactants you listed, write out a chemical equation for the reaction you observed .
	HINT: This is a double replacement reaction - swap the sodium and the hydrogen to determine the products that formed.
	One of the products you'll get is HHCO $_3$ - what 2 substances do you think this turns into - think of what was released in the lab.
4.	What happened to the mass after the reactions? Does it agree with the conservation of mass law? Why or why not?
5.	If your data does not support the conservation of mass law, how could you modify the experiment to test the theory?
	stigation / activity has been adapted from: Tartha J, McClelland L, et al. <i>Science in Action 9</i> . Toronto, ON: Addison Wesley.

Conclusion: How do the mass of reactants and products in a chemical reaction compare in an open system versus a closed system?
Extension: 1. Is Earth an open system or a closed system? Explain. How does this influence the types of chemical reactions that happen on earth??
This investigation / activity has been adapted from: Mah K, Martha J, McClelland L, et al. <i>Science in Action 9</i> . Toronto, ON: Addison Wesley.