\qquad Date: \qquad

Neutralizing Acids

Learner outcomes:

- Investigate, safely, and describe the effects of acids and bases on each other and on other substances (e.g., investigate and describe the reaction that results when baking soda is dissolved; describe the role of acids and basis in neutralizing each other)

Key Terms:

Acid
PH
Neutralization
Base
Neutral

Background Information: When equal amounts of acidic and basic solutions of comparable strength are mixed, the ensuing reaction produces a neutral solution. This is very important to the chemistry of our stomachs. Hydrochloric acid, normally found in gastric juices, is necessary for the proper digestion of proteins in the stomach. Some patients suffer from acid indigestion, either from eating too much of certain foods or as a result of a weak lining in the stomach. In this case, an antacid (e.g., a base such as TUMS or milk of magnesia) can be administered to neutralize the excess acid in the stomach and provide relief. On the other hand, some patients suffering from hypoacidity, i.e., a lower than normal amount of hydrochloric acid in the stomach, are actually given dilute hydrochloric acid orally to overcome this deficiency.

Research question: What effect does mixing acids with bases or neutral solutions have on the resulting pH of the solution?

Hypothesis: predict what will happen when a baking powder mixture is added to vinegar.

Materials:

Water
pH paper
pH meter
blue litmus
red litmus
dilute acid
dilute base
baking powder
$2 \times 50 \mathrm{~mL}$ beaker
Measuring spoon

This investigation / activity has been adapted from:
Mah K, Martha J, McClelland L, et al. Science in Action 9. Toronto, ON: Addison Wesley.

Procedure:

1. Place 2 mL of baking powder in 30 ml of water in a 50 mL beaker. Test and record the pH of the resulting mixture.
2. Place 10 mL of vinegar in a second 50 mL beaker, Test and record the pH of the vinegar.
3. Stir the baking powder mixture and slowly add 10 mL of this mixture into the vinegar. Measure and record the pH of the resulting mixture.
4. Add the remainder of the baking powder mixture to the baking powdervinegar mixture. Measure and record the pH of the resulting mixture.

Observations:

Solution/ mixture	Observations	Initial pH	Acid / Base/ neutral	Final pH	Acid / Base / Neutral
Baking powder and water					
Vinegar					
10mL Baking Powder + 10 mL vinegar					
30 mL baking powder + vinegar					

Analysis:

1. Was the pH of the vinegar-baking powder mixture different from that of the vinegar alone? Explain.
2. What evidence was there that a chemical change took place?

This investigation / activity has been adapted from:
Mah K, Martha J, McClelland L, et al. Science in Action 9. Toronto, ON: Addison Wesley.
3. What happened when you added more of the baking powder mixture? Explain.
4. What can we say about the amount of acid and base that must be added together to get a neutral solution?
5. Was your hypothesis correct? Why or why not?

Conclusion:

Extension:

1. Design an experiment to determine how adding water to a solution affects its pH . In your design, include an hypothesis with an explanation of what you expect to happen.

This investigation / activity has been adapted from:
Mah K, Martha J, McClelland L, et al. Science in Action 9. Toronto, ON: Addison Wesley.

