

Davidson Creek Elementary School Parking and Traffic Review

Final Report

Prepared for

Elk Island Public Schools

Date

March 24, 2017

Prepared by

Bunt & Associates

Project No.

3483.01

CORPORATE AUTHORIZATION

This document entitled "Davidson Creek Elementary School Parking and Traffic Review, Final Report" was prepared by Bunt & Associates for the benefit of the Client to whom it is addressed. The information and data in the report reflects Bunt & Associates best professional judgment in light of the knowledge and information available to Bunt & Associates at the time of preparation. Except as required by law, this report and the information and data contained are to be treated as confidential and may be used and relied upon only by the client, its officers and employees. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Bunt & Associates accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

PERMIT TO PRACTICE
BUNT & ASSOCIATES ENGINEERING
N. ALBERTA) LTD.

Signature

Date

PERMIT NUMBER: P 7991

The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

Corporate Permit

Engineer's Stamp

TABLE OF CONTENTS

CO	RPOR	ATE AUTHORIZATION	2
1.	INTE	RODUCTION	
	1.1	Background	
	1.2	Study Objectives	
	1.3	Study Methodology	
2.	SITE	CONTEXT	3
	2.1	Existing Site Conditions	
		2.1.1 Site Location and Land Use	
		2.1.2 Existing Roadways and Intersections	
		2.1.3 Existing Pedestrian Facilities	
		2.1.4 Existing Transit	
		2.1.5 Existing Traffic Volumes	6
		2.1.6 Existing Parking Accumulation	
	2.2	Future Site Conditions	8
		2.2.1 Study Horizon	8
		2.2.2 Background Volumes	8
3.	PRO	POSED SITE DEVELOPMENT	15
	3.1	Site Layout	15
	3.2	Site Access	15
	3.3	On-Site Parking	15
	3.4	School Bus Parking	15
	3.5	Passenger Drop-off/Pick-up Spaces	17
4.	SITE	GENERATED TRAFFIC VOLUMES	19
	4.1	Trip Generation Rate Assumptions	19
	4.2	Trip Generation Estimates	19
	4.3	Trip Distribution and Assignment	20
	4 4	Total Traffic Volume Estimates	20

5.	TRAI	NSPOR	RTATION ASSESSMENT	25
	5.1	Collect	or Roadway Review	25
	5.2	Interse	ction Capacity Analyses	25
		5.2.1	Lakeland Drive and Davenport Drive	27
		5.2.2	Lakeland Drive and Clarkdale Drive	
		5.2.3	Davidson Drive & Clover Bar Road	34
		5.2.4	Davidson Drive & Davenport Drive	
		5.2.5	Davenport Drive & Davenport Place	
		5.2.6	Davenport Drive & Clarkdale Drive	
		5.2.7	Davenport Drive Staff Access	
		5.2.8	Davenport Place Student Access	
	5.3		onal Transportation Considerations	
		5.3.1	School Zone/Area Assessment	
		5.3.2	Active Modes	
		5.3.3	Pedestrian Crossing Control	
		5.3.4	Student Drop-off/Pick-up Queuing Needs	
		5.3.5 5.3.6	Bus Drop-off/Loading ReviewOn-Street Parking	
6. APPI APPI APPI		5.3.7	Education and Encouragement	
		5.3.8	Community Concerns	
6	CON		ONS & RECOMMENDATIONS	
•				13
APF	PENDI	X A TF	RAFFIC AND PARKING COUNTS	
APF	PENDI	X B SY	NCHRO 9 PRINTOUTS	
APF	PENDI	X C SC	CHOOL ZONES/AREAS WARRANTS	
APF	PENDI	X D BE	EST PRACTICE STUDENT LOADING PROCESS	

EXHIBITS

Exhibit 2-1: Study Location	4							
Exhibit 2-2: Existing Site Conditions	7							
Exhibit 2-3: Existing Traffic Volumes - AM (PM School) Peak Hours & Daily	9							
Exhibit 2-4: 2021 Background Traffic Volume Estimates - AM (PM School) Peak Hours & Daily	13							
Exhibit 3-1: Proposed Site Layout	16							
Exhibit 4-1: Site Generated Traffic Volumes - AM (PM School) Peak Hours & Daily	21							
Exhibit 2-2: Existing Site Conditions. Exhibit 2-3: Existing Traffic Volumes - AM (PM School) Peak Hours & Daily. Exhibit 2-4: 2021 Background Traffic Volume Estimates - AM (PM School) Peak Hours & Daily. Exhibit 3-1: Proposed Site Layout								
TABLES								
Table 4-1: Trip Generation Rates	19							
Table 4-2: Trip Generation Estimates	19							
Table 4-3: Trip Generation by Component	20							
Table 5-1: Lakeland Drive and Davenport Drive - AM Peak Hour	28							
Table 5-2: Lakeland Drive and Davenport Drive – PM School Peak Hour	29							
Table 5-3: Lakeland Drive and Davenport Drive – Signalized	30							
Table 5-4: Lakeland Drive and Clarkdale Drive - AM Peak Hour (Unsignalized)	31							
Table 5-5: Lakeland Drive and Clarkdale Drive - AM Peak Hour (Signalized)	32							
Table 5-6: Lakeland Drive and Clarkdale Drive - PM School Peak Hour	33							
Table 5-7: Davidson Drive and Clover Bar Road - AM Peak Hour	34							
Table 5-8: Davidson Drive and Clover Bar Road - PM School Peak Hour	35							
·								
Table 5-10: Davidson Drive and Davenport Drive - PM School Peak Hour	37							
·								
Table 5-12: Davenport Drive and Davenport Place - PM School Peak Hour	38							
Table 5-13: Davenport Drive and Davenport Place - All-Way Stop								
Table 5-14: Davenport Drive and Clarkdale Drive - AM Peak Hour								
Table 5-15: Davenport Drive and Clarkdale Drive - PM School Peak Hour								
Table 5-16: Davenport Drive Staff Access								
Table 5-17: Davenport Place Student Access								
Table 5-18: School Zone Results Matrix	43							
Table 5-10: School Zone /Area Warrant Results	13							

1. INTRODUCTION

1.1 Background

In October 2014, Elk Island Public Schools (EIPS) received approval from the provincial government for a new school in Sherwood Park. EIPS worked with Strathcona County to review land available for future school buildings and analyze enrolment projections to determine needs and decide on a school site. On January 4, 2016, EIPS announced a new K-6 school to be located in Davidson Creek. The lands in Davidson Creek were subdivide and zoned PS – Public Service in 1992 specifically to accommodate a school in the future.

Stantec, formerly known as Architecture Tkalcic Bengert (ATB), is currently developing the design plans for the proposed school. As part of the design process, Bunt & Associates was retained by EIPS to complete a traffic and parking review.

1.2 Study Objectives

The objectives of the Davidson Creek school traffic and parking review include:

- Confirmation of parking supply, drop-off spaces, and bus loading requirements for the proposed school;
- · Confirmation of the on-site circulation characteristics of the proposed school site; and
- Identification of potential capacity constraints and appropriate mitigation measures, if required, at key study intersections in the vicinity of the proposed school site.

1.3 Study Methodology

The methodology used in the preparation of the Davidson Creek Elementary School traffic and parking review includes the following key components:

- The review of the existing traffic and parking operations in the vicinity of Davidson Creek Park;
- The review and confirmation of background traffic volumes;
- Determination of future traffic activity associated with the elementary school;
- The review of the access strategy, on-site parking and drop-off locations, and on-site circulation strategy for the new school; and
- The review of key study intersection operations to identify potential short term traffic control and intersection geometry improvements.

THIS PAGE INTENTIONALLY LEFT BLANK

2. SITE CONTEXT

2.1 Existing Site Conditions

2.1.1 Site Location and Land Use

The elementary school will be located on the existing Davidson Creek Park site within the Davidson Creek neighbourhood and is bounded by Davenport Drive to the north, Davenport Place to the east, a creek to the south, and existing residential land uses to the west. Davidson Creek Park currently includes a baseball diamond on the east side of the site, and a playground is located on the northwest corner of the site. **Exhibit 2-1** illustrates the location of Davidson Creek Park.

2.1.2 Existing Roadways and Intersections

The following roadways are developed in the vicinity of the proposed school site:

- **Clover Bar Road** is a four-lane divided arterial roadway with left and right turn bays developed at key intersections and a posted speed limit of 60 km/h
- Lakeland Drive is an urban four-lane divided arterial with left and right turn bays developed at key intersections and a posted speed limit of 60 km/h.
- Davidson Drive is a major collector roadway providing a connection between Clover Bar Road and Davenport Drive and generally has a pavement width of 13.5 metres accommodating two travel lanes and two parking lanes. Davidson creek widens as it approaches Clover Bar Road to allow for the necessary channelization at the Davidson Drive/Clover Bar Road intersection. Davidson Drive has a posted speed limit of 50 km/h.
- Davenport Drive is a major collector roadway running east-west along the north property line of Davidson Creek Park and generally has a pavement width of about 13.5 metres accommodating two travel lanes and two parking lanes. Davenport Drive has a posted speed limit of 50 km/h except in the vicinity of Davidson Creek Park where a playground zone is posted with a speed limit of 30 km/h. Davenport Drive connects to Lakeland Drive and Clarkdale Drive.
- Clarkdale Drive is a major collector roadway providing a connection between Lakeland Drive and Meadowview Drive in the Clarkdale Meadows neighbourhood and generally has a pavement width of 13.5 metres accommodating two travel lanes and two parking lanes. Clarkdale Drive has a posted speed limit of 50 km/h except in the vicinity of Clarkdale Park where a playground zone is posted with a speed limit of 30 km/h.

Exhibit 2-1

Davidson Creek Elementary School Traffic & Parking Review

bunt & associates | Project No.3483.01

• Davenport Place is a local roadway running north-south along the east property line of Davidson Creek Park and generally has a pavement width of 9.5 metres. A playground zone with a posted speed limit of 30 km/h is in place along Davenport Place in the vicinity of Davidson Creek Park. South of the park site, the posted speed limit is 50 km/h. Parking is permitted on both the east and west sides of Davenport Place.

The following intersections have been identified for inclusion in this study as they represent key intersections in the vicinity of the plan area that are anticipated to accommodate the majority of the study area traffic.

Lakeland Drive & Davenport Drive is a four-legged unsignalized intersection with stop control on the north and south approaches. A pedestrian flasher is provided on the west approach. Northbound and southbound through movements are banned at the intersection. The remaining geometry includes:

- West Approach one left turn bay, two through lanes, one right turn bay;
- East Approach one left turn bay, two through lanes, one right turn bay;
- South Approach one shared left/right lane; and
- North Approach one left turn lane, one right turn bay.

Lakeland Drive & Clarkdale Drive is a four-legged unsignalized intersection with stop control on the north and south approaches. Northbound and southbound through movements are banned at the intersection. The following geometry is permitted:

- West Approach one left turn bay, two through lanes, one right turn bay;
- East Approach one left turn bay, two through lanes, one right turn bay;
- South Approach one left turn lane, one right turn bay; and
- North Approach one left turn lane, one right turn bay.

Davidson Drive & Clover Bar Road is a four-legged signalized intersection and includes the following geometry:

- West Approach one left turn lane, one shared through/right turn lane
- East Approach one left turn lane, one shared through/right turn lane
- South Approach one left turn bay, two through lanes, one right turn bay; and
- North Approach one left turn bay, two through lanes, one right turn bay.

Davidson Drive & Davenport Drive is an unsignalized T-intersection with stop control along Davidson Drive. A single lane accommodating all movements is provided on each approach.

Davenport Drive & Davenport Place is an unsignalized T-intersection with stop control on the south approach. A single lane accommodating all movements is provided on each approach.

Davenport Drive & Clarkdale Road is an unsignalized T-intersection with stop control on the west approach with a single lane accommodating all movements on each approach. A zebra crosswalk is provided on the south approach and connects to the trail system within Clarkdale Park.

A playground zone has been established along Davenport Drive and Davenport Place in the vicinity of Davidson Creek Park. A playground zone has a black and white 30 km/h sign attached below the yellow sign. When you pass this sign, you have entered a playground zone and must stay within the maximum posted speed during the times the zone is in effect. In Strathcona County, the playground zone is in effect starting at 8:30 AM and ending one hour after sunset.

2.1.3 Existing Pedestrian Facilities

In addition to the road based system including sidewalks along all collector and local roadways, a network of asphalt and granular trails exists within and adjacent to Davidson Creek and Clarkdale Meadows connecting the proposed school site to the surrounding neighbourhoods. The existing sidewalk and trail system creates a highly walkable environment. Zebra marked crosswalks are provided wherever a trail crosses a collector roadway.

2.1.4 Existing Transit

Transit Routes 433 and 433A currently run along Davenport Drive in the vicinity of Davidson Creek Park. Bus stops 7313 and 7306 are located along Davenport Drive immediately east of Davenport Place. Route 433 operates all day, while Route 433A is school route that only runs once in the morning starting at 7:59 AM and once in the afternoon starting at 3:21 PM. Route 433 runs from the Bethel Transit Terminal through the Charlton Heights, Lakeland Drive, Clarkdale Meadows, and Davidson Creek neighbourhoods. Route 433A provides access from Charlton Heights, Lakeland Ridge, Chelsea Heights, Clarkdale Meadows, and Davidson Creek to Archbishop Jordan Catholic High School.

Exhibit 2-2 illustrates the existing roadways and pedestrian and transit facilities within the study area.

2.1.5 Existing Traffic Volumes

AM and PM traffic counts were completed at the following intersections in May 2016:

- Lakeland Drive/Davenport Drive;
- Lakeland Drive/Clarkdale Drive;
- Davidson Drive/Clover Bar Road;
- · Davidson Drive/Davenport Drive;
- Davenport Drive/Davenport Place; and
- Davenport Drive/Clarkdale Drive.

Exhibit 2-2

Existing Conditions

Davidson Creek Elementary School Traffic & Parking Review

bunt & associates | Project No.3483.01

The purpose of the counts was to identify traffic volumes during peak school operations, rather than peak hours of adjacent street traffic. In addition to the above peak hour traffic counts, 24-hour traffic counts were completed at the Davidson Drive/Davenport Drive and Davenport Drive/Clarkdale Road intersections to gain an appreciation of the existing daily volumes along the collector roadways in the vicinity of Davidson Creek Park. **Exhibit 2-3** illustrates the 2016 AM peak hour and PM school peak hour traffic volumes. Based on the 24-hour traffic counts measured daily traffic volumes are approximately equal to 5.3 times the AM plus PM peak hour traffic volumes. Daily volume estimates are also summarized in Exhibit 2-3. Detailed traffic count information is included in **Appendix A**.

Based on a review of other elementary schools in Sherwood Park, classes typically begin around 8:30-8:45 AM and end around 3:15 PM. For the purposes of this assessment, the AM peak hour of the school is assumed to coincide with the peak hour of adjacent street traffic measured during the traffic counts in May 2016. The PM peak hour of the school is assumed to occur from 3:15 PM to 4:15 PM.

2.1.6 Existing Parking Accumulation

Parking accumulation surveys were completed on Thursday, May 19, 2016 from 7:00 AM to 9:00 AM and 2:30 PM to 6:00 PM to gain an understanding of the existing on-street parking conditions along Davenport Drive and Davenport Place in the vicinity of Davidson Creek Park. An on-street parking supply of about 71 spaces is estimated to be provided in the immediate vicinity of Davidson Creek Park along Davenport Drive and Davenport Place. A peak utilization of 10 spaces (14%) was recorded between 7:00 AM and 7:30 AM. More than 60 parking spaces continued to be available throughout the entire duration of the study. Detailed summaries of the parking accumulation surveys are included in Appendix A.

2.2 Future Site Conditions

2.2.1 Study Horizon

For the purposes of this assessment, it is assumed that the school will be constructed and operating at full capacity within five years; therefore, a short term (2021) horizon was included in the assessment.

2.2.2 Background Volumes

Background traffic is the component of traffic on the adjacent roadway system that would be present regardless of the proposed school proceeding. Background traffic volumes were estimated to correspond to the 2021 horizon.

General Growth

To account for growth within Sherwood Park, a growth rate of 3% per year was applied to east/west through volumes measured at intersections along Lakeland Drive and north/south through volumes measured along Clover Bar Road.

Davidson Creek Elementary School Parking & Traffic Review bunt & associates I Project No. 3483.01

NTS

Existing Traffic Volumes AM (PM School) and Daily Exhibit 2-3

The proposed school site is located within a fully developed neighbourhood; therefore, growth along the collector roadways within Davidson Creek and Clarkdale Meadows is anticipated to be limited to school site generated traffic.

Summerwood

The majority of Summerwood South is developed and was captured in the existing traffic volumes at the Lakeland Drive intersections; however, there are small pockets of undeveloped residential lots on the east edge of the plan area. Summerwood North is planned to include the development of 507 single family/semi-detached dwelling units and 103 townhouse units. Summerwood traffic volumes used in the completion of the *Lakeland Drive and Highway 21 Traffic Assessment, Draft Report* completed by Bunt & Associates in February 2016 were added to the network during the AM and PM peak hours. To be conservative, traffic volumes associated with Summerwood North also included the development of an elementary/Jr. high school with up to 750 students.

Based on a review of existing traffic volumes measured at the Lakeland Drive/Davenport Drive and Lakeland Drive/Clarkdale Drive intersections, PM school peak hour traffic volumes associated with Summerwood are approximately 30% lower than during the PM peak hour. Therefore, PM peak hour Summerwood traffic volumes (without school traffic) were reduced by 30% and added to the network during the PM school peak hour. PM school peak hour traffic volumes associated with the Summerwood North school were also estimated and added to the network.

Exhibit 2-4 illustrates the 2021 AM peak hour, PM school peak hour, and daily background traffic volume estimates.

THIS PAGE INTENTIONALLY LEFT BLANK

2021 Background Traffic Volume Estimates AM (PM School) and Daily

PROPOSED SITE DEVELOPMENT

The proposed Davidson Creek Elementary School will be constructed to accommodate kindergarten through grade 6 and is designed to accommodate a full buildout capacity of 600 students. Based on information provided by EIPS, 50 staff members are anticipated. For the purposes of this assessment, it is assumed that the school would operate at full capacity in the 2021 horizon.

3.1 Site Layout

The school site includes a two storey building footprint on the east half of the Davidson Creek Park site and playing fields on the west half of the site. The existing playground on the northwest corner of the park site is anticipated to remain. As shown in **Exhibit 3-1**, staff parking is proposed north of the building, while a student drop-off loop/visitor parking lot is proposed east of the building. A bus loading area is proposed on-street along the south side of Davenport Drive.

3.2 Site Access

The site is accessed via Davenport Drive and Davenport Place. A staff access is proposed along Davenport Drive approximately 135 metres west of the Davenport Drive/Davenport Place intersection. A one-way southbound student drop-off loop is proposed to be accessed via Davenport Place approximately 45 metres south of Davenport Drive. The drop-off loop also provides access to visitor parking spaces. No internal connection is proposed between the staff lot and the drop-off/visitor lot.

3.3 On-Site Parking

Based on a review of the site plan, a staff parking lot accommodating 50 parking spaces is proposed to be provided on the north side of the school and 15 visitor spaces are proposed to be provided on the east side of the school.

Based on Strathcona County's Land Use Bylaw 6-2015, the minimum parking space requirement for an elementary school is 1.0 per 10 students. Based on 600 students, the minimum parking space requirement is 60 spaces. With the provision of 65 staff and visitor parking spaces, the proposed school meets Strathcona County's Land Use Bylaw.

3.4 School Bus Parking

A school bus loading area has been identified on-street along the south side of Davenport Drive. The area is anticipated to accommodate five school busses parked end to end, parallel to the south curb. According to Strathcona County's Land Use Bylaw 6-2015, a minimum of five bus loading spaces are required.

N.T.S.

Site Plan

Exhibit 3-1

3.5 Passenger Drop-off/Pick-up Spaces

Based on the proposed site plan, 10 drop-off spaces have been identified within the drop-off loop on the east side of the school building.

Based on Strathcona County's Land Use Bylaw 6-2015, elementary schools require 3.0 loading spaces per 100 students with a minimum of five spaces required. Based on 600 students, 18 loading spaces are required. During peak pick-up and drop-off times, it is anticipated that the 15 visitor parking spaces could also be used as passenger drop-off or pick-up spaces. It is also anticipated that a portion of parking along the south side of Davenport Drive could be used for passenger drop-off and pick-up activity.

THIS PAGE INTENTIONALLY LEFT BLANK

4. SITE GENERATED TRAFFIC VOLUMES

4.1 Trip Generation Rate Assumptions

The AM peak hour, PM school peak hour, and daily trip generation rates used in the assessment are based on trip generation rates published in the Institute of Transportation Engineer's (ITE) Trip Generation Manual, 9th Edition for Land Use Code 520 – Elementary School. **Table 4-1** summarizes the assumed trip generation rates used in the assessment for the proposed school.

Time Period	Trips/Student	In/Out Split
AM Peak Hour	0.45	55%/45%
PM School Peak Hour	0.28	45%/55%
Daily	1.29	50%/50%

Table 4-1: Trip Generation Rates

4.2 Trip Generation Estimates

Table 4-2 summarizes the projected two-way AM peak hour, PM school peak hour, and daily vehicle trips anticipated to be generated by the proposed school upon full buildout. As shown in Table 4-2, the proposed school is anticipated to generate in the order of 271 two-way vehicle trips in the AM peak hour, 168 two-way vehicle trips in the PM school peak hour, and 774 two-way vehicle trips on a typical school day.

PM School AM Peak Hour Daily Peak Hour Intensity Out In Out In Out In 600 Students 149 76 92 387 122 387 271 168 774 Total

Table 4-2: Trip Generation Estimates

The ITE trip generation rates do not distinguish between staff, visitor, or drop-off trips associated with the elementary school. For the purposes of this assessment, 50 inbound trips during the AM peak hour and 50 inbound/50 outbound trips on a daily basis are assumed to be associated with school staff trips. It is anticipated that the majority of outbound trips associated with school staff will occur outside the PM school peak hour. The remaining trips are assumed to be associated with student drop-off/pick-up and visitor trips. **Table 4-3** summarizes the assumed breakdown of vehicle trips.

Table 4-3: Trip Generation by Component

Component	AM Pea	ık Hour		chool Hour	Daily		
	In	Out	In	Out	In	Out	
School Staff	50	0	0	4	50	50	
Visitor & Drop-Off/Pick-Up	99	122	76	88	337	337	
Total	149	122	76	92	387	387	
Total	27	71	16	58	774		

4.3 Trip Distribution and Assignment

The catchment area for the school has not been defined; however, based on information provided by EIPS, the catchment area of the Davidson Creek Elementary School is assumed to include the Davidson Creek and Clarkdale Meadows neighbourhoods. Students residing outside the catchment area will not be eligible to attend the proposed school; therefore, school trips are projected to primarily originate from or be destined to these two neighbourhoods.

For the purposes of this assessment, it was assumed that 40% of drop-off/pick-up trips are associated with parents dropping off or picking up students on their way to and from work. These drop-off or pick-up trips were distributed to/from Sherwood Park and surrounding areas including the City of Edmonton. The remaining 60% of drop-off/pick-up trips are assumed to be home based trips and were distributed to/from the Davidson Creek and Clarkdale Meadows neighbourhoods based on a review of existing dwelling units.

Staff and visitor trips are projected to have a larger catchment area; therefore, the distribution of staff and visitor trips was based on a review of existing neighbourhood populations from Strathcona County's 2015 Census.

The traffic anticipated to be generated by the proposed school was assigned to the roadway network based on the assumed distribution and location of the access points. **Exhibit 4-1** illustrates the site generated traffic volume estimates on the roadway network under full buildout of the proposed school during the AM peak hour, PM school peak hour, and daily time frames.

4.4 Total Traffic Volume Estimates

The site generated traffic volumes were added to the 2021 background traffic volume estimates to determine the total traffic volumes for use in the assessment. **Exhibit 4-2** illustrates the 2021 total traffic volumes during the AM peak hour, PM school peak hour, and a typical school day.

mes Site Generated Traffic Volu AM (PM School) and Daily

Estimates 2021 Total Traffic Volume AM (PM School) and Daily

5. TRANSPORTATION ASSESSMENT

5.1 Collector Roadway Review

Based on Strathcona County's December 2011 Design and Construction Standards, the maximum volume on collector roads is 6,000 vpd, except within 200 metres of intersections with arterial roads, where volumes could be expected to increase by 50% (9,000 vpd) providing the lane design is adequate to accommodate the traffic volumes and turning movements. The County's standards also state that residential subdivision lot layouts shall not provide driveway access onto major collector roads that have an estimated traffic volume of 4,000 vpd or greater.

Based on a review of 2021 total daily traffic volume estimates, the majority of collector roadways within the study area are projected to accommodate daily traffic volumes less than 4,000 vpd. Approximately 4,555 vpd are projected along Davidson Drive as it approaches Clover Bar Road; however, this is within the acceptable limits as outlined in the Design and Construction Standards as there are no residential driveway accesses and the volume is less than the 6,000 vpd.

5.2 Intersection Capacity Analyses

In addition to the review of daily volumes within the neighbourhood, intersection assessments were completed at key arterial/collector and collector/collector intersections with Davidson Creek and Clarkdale Meadows to confirm the required intersection geometry and traffic control.

The intersection capacity assessments were completed using Synchro 9 (signalized intersections) and the Synchro HCM 2010 module (unsignalized intersections). The intersection operations are typically rated by two measures. The volume-to-capacity (v/c) ratio describes the extent to which the traffic volumes can be accommodated by the physical capacity of the road configuration and traffic control. A value (measured during the peak hour) less than 0.90 indicates that generally there is sufficient capacity and the projected traffic volumes can be accommodated at the intersection. A value between 0.90 and 1.0 suggests unstable operations may occur and volumes are nearing capacity conditions. A calculated value over 1.0 indicates that traffic volumes are theoretically exceeding capacity. The second measure of performance, Level of Service (LOS), is based on the estimated average delay per vehicle among all traffic passing through the intersection. A low average delay merits a LOS A rating. Average delays greater than 80 seconds per vehicle at a signalized intersection generally produce a LOS F rating, while at unsignalized intersections a LOS F is reached when vehicles experience an average delay greater than 50 seconds.

The anticipated 95th percentile queue length has also been included in the following assessment summaries. The queues provided may include a footnote that relates to the ability of the program to estimate the queue accurately. The 'm' footnote indicates that the volume entering the intersection is being metered by an upstream intersection. The Synchro help file also provides the following regarding the '#' footnote:

"The # footnote indicates that the volume for the 95^{th} percentile cycle exceeds capacity. This traffic was simulated for two complete cycles of 95^{th} percentile traffic to account for the effects of spill over between cycles. If the reported v/c < 1 for this movement, the methods used represent a valid method for estimating the 95^{th} percentile queue. In practice, 95^{th} percentile queue shown will rarely be exceeded and the queues shown with the # footnote are acceptable for the design of storage bays."

The methodology includes a number of assumptions that relate to the operating conditions present at the intersections. The following assumptions were used in the assessments.

- Saturation Flow Rate 1,900 vph
- Peak Hour Factor (PHF) existing and background as per existing conditions; reduced to reflect peak 15 minute activity associated with school drop-off/pick-up activity in future total scenarios
- %HV -existing and background as per existing conditions.

The geometry assumed for each intersection is included in the assessment tables. Left turn movements, through movements, and right turn movements are represented by "L", "T", and "R" respectively in the assessment tables, and lanes are separated by a "/". For example, an approach whose geometry is described as LT/R features two lanes: one lane accommodating shared left/through movements and a second lane accommodating right turning movements.

Traffic control information is also included in the assessment tables. Key signal phasing is identified in the tables, with protected/permitted left turn phasing identified by "Pm+Pt" and protected only left turn phasing identified by "Prot". Permitted and overlapped right turn phasing is identified by "Pm+Ov" and free-flow right turns are denoted by "free".

As per the HCM 2010 methodology, unsignalized intersection assessment results are reported for critical movements only. As well, the HCM 2010 95th percentile queue is reported as vehicles; therefore, a distance in metres was calculated assuming an average of 7.5m per vehicle.

Detailed Synchro printouts are included in **Appendix B** for reference.

¹ Trafficware LLC., Synchro Studio 9 User Guide, Chapter 10 - Timing/Signing Settings, Queue Lengths, pg. 10-19.

The following intersections were included in the assessment:

Arterial/Collector Intersections

- Lakeland Drive and Davenport Drive;
- Lakeland Drive and Clarkdale Drive; and
- Davidson Drive and Clover Bar Road.

Collector/Collector Intersections

- Davidson Drive and Davenport Drive; and
- Davenport Drive and Clarkdale Drive.

Collector/Local Intersections & Accesses

- Davenport Drive and Davenport Place;
- Davenport Drive school access; and
- Davenport Place school access.

5.2.1 Lakeland Drive and Davenport Drive

Tables 5-1 and **5-2** summarizes the results of the capacity analyses at the Lakeland Drive/Davenport Drive intersection during the AM peak hour and PM school peak hour based on existing, background, and total traffic scenarios.

As shown in Table 5-1, the northbound and southbound left turn movements are projected to experience level of service F based on 2021 background traffic volumes during the AM peak hour due to the increase in through traffic along Lakeland Drive. With the addition of school generated trips, the northbound left turn movement is projected to exceed capacity during the AM peak hour. It is noted that the increase in northbound left turning traffic could be conservative as a parent may currently use this route to get to work during the AM peak hour; therefore, they would not represent a new trip on the network in the future and could be double counted at the Lakeland Drive/Davenport Drive intersection. It should also be noted that Synchro does not account for the pedestrian flasher located on the west approach of the intersection, and intersection operations may be better than reported due to the gap created for vehicles on the north and south approaches when the pedestrian flasher is activated.

It is also noted that the southbound left turn was recorded as improving with the addition of site generated traffic during the AM peak hour. This improvement is due to the change in peak hour factors between 2021 background and total traffic scenarios. With the addition of site generated traffic between 8:15 AM and 8:30 AM, the overall peak 15 minute period for the intersection shifted resulting in different peak hour factors for each movement. The results indicate that the peak 15 minute period for Summerwood traffic is not anticipated to coincide with the peak 15 minute period for Davidson Creek/Clarkdale Meadows at this location.

Table 5-1: Lakeland Drive and Davenport Drive - AM Peak Hour

	E	astbound		,	Westbound	d	North	bound	Southbound	
Movement	L	Т	R	L	Т	R	L	R	L	R
		2016	Existin	g – Unsig	gnalized (N	I/S Stop	Control)			
Geometry		L/T/T/R			L/T/T/R		L	R	L,	/R
Volume (vph)	29	157	11	46	585	7	62	61	42	123
v/c	0.03			0.04			0.26	0.09	0.37	0.20
Delay (s)	8.9			7.9			23.0	9.3	30.8	11.5
LOS	Α			Α			С	Α	D	В
95 th Queue (m)	1			1			8	2	12	5
	•	•	5.6	Int	ersection	LOS	Α			
2021 Background – Unsignalized (N/S Stop Control)										
Geometry		L/T/T/R			L/T/T/R			R	L,	/R
Volume (vph)	29	307	11	46	880	7	62	61	42	123
v/c	0.04			0.04			0.48	0.10	0.73	0.25
Delay (s)	10.1			8.5			52.4	10.0	97.3	13.6
LOS	В			Α			F	В	F	В
95 th Queue (m)	1			1			17	2	29	8
	Inter	section D	elay			8.5	Int	ersection	LOS	Α
		20	21 Total	– Unsigr	nalized (N/	S Stop C	ontrol)			
Geometry		L/T/T/R			L/T/T/R		L	R	L/R	
Volume (vph)	29	307	20	50	880	7	90	61	42	123
v/c	0.04			0.05			1.13	0.07	0.37	0.22
Delay (s)	10.1			8.4			171.4	9.7	54.6	13.2
LOS	В			Α			F	Α	F	В
95 th Queue (m)	1			2			71	2	11	6
	Inter	section D	elay			20.1	Int	ersection	LOS	С

Table 5-2: Lakeland Drive and Davenport Drive - PM School Peak Hour

	Е	astbound		,	Westbound	l	North	bound	South	bound
Movement	L	Т	R	L	Т	R	L	R	L	R
		2016	Existin	g – Unsig	gnalized (N	/S Stop	Control)			
Geometry		L/T/T/R			L/T/T/R		L	R	L/R	
Volume (vph)	88	386	52	39	289	24	24	53	7	66
v/c	0.07			0.04			0.13	0.07	0.03	0.16
Delay (s)	8.3			8.5			26.7	10.3	22.8	10.6
LOS	Α			Α			D	В	С	В
95 th Queue (m)	2			1			3	2	1	5
	•		3.3	Int	ersection	LOS	Α			
2021 Background - Unsignalized (N/S Stop Control)										
Geometry		L/T/T/R			L/T/T/R			R	L/R	
Volume (vph)	88	627	52	39	474	24	24	53	7	66
v/c	0.09			0.05			0.24	0.09	0.06	0.19
Delay (s)	8.9			9.4			52.0	11.6	38.0	11.7
LOS	Α			Α			F	В	E	В
95 th Queue (m)	2			1			7	2	2	5
	Inter	section D	elay			3.0	Int	ersection	LOS	Α
		202	21 Total	– Unsigr	nalized (N/	S Stop Co	ontrol)			
Geometry		L/T/T/R			L/T/T/R		L	R	L/R	
Volume (vph)	88	627	70	39	474	24	25	53	7	66
v/c	0.09			0.05			0.25	0.09	0.06	0.19
Delay (s)	8.9			9.4			52.6	11.6	38.0	11.7
LOS	Α			Α			F	В	E	В
95 th Queue (m)	2			1			7	2	2	5
	Inter	section D	elay	•		3.0	Int	ersection	LOS	Α

As shown in Table 5-2, the northbound left movement is projected to experience LOS F during the PM school peak hour based on 2021 background and total traffic conditions due to the increase in through volume along Lakeland Drive. However, the left turn volume and v/c ratio are low indicating there is sufficient capacity at the intersection.

The Lakeland Drive/Davenport Drive intersection is anticipated to be signalized in the future based on previous traffic studies completed for the surrounding area. Therefore, the intersection was re-assessed assuming the intersection was fully signalized within the five year horizon. As shown in **Table 5-3**, the intersection of Lakeland Drive and Davenport Drive is projected to operate at acceptable levels of service during the AM peak hour and PM school peak hour based on 2021 total traffic volumes and assuming full signalization. It is recommended that the Lakeland Drive/Davenport Drive intersection be monitored as Summerwood North and Davidson Creek School develop to determine if and when signalization is warranted.

Table 5-3: Lakeland Drive and Davenport Drive - Signalized

	E	astbound		1	Westbound	d	North	bound	Southbound	
Movement	L	Т	R	L	Т	R	L	R	L	R
		AM Pe	ak Hour	- 2021 T	otal - Sign	alized (1	40s cycle)			
Geometry		L/T/T/R			L/T/T/R		L	R	L,	/R
Volume (vph)	29	307	20	50	880	7	90	61	42	123
v/c	0.09	0.15	0.03	0.11	0.40	0.01	0.30	0.12	0.08	0.22
Delay (s)	13.1	12.7	3.5	12.9	15.6	0.3	38.6	8.6	34.7	6.6
LOS	В	В	Α	В	В	Α	D	Α	С	Α
95 th Queue (m)	9	28	1	13	79	0	32	11	18	15
	Inter	section D	elay			16.5	Intersection LOS		В	
		PM Pe	ak Hour	- 2021 T	otal - Sign	alized (1	40s cycle)	1		
Geometry		L/T/T/R			L/T/T/R	LR			L/R	
Volume (vph)	88	627	70	39	474	24	25	53	7	66
v/c	0.19	0.31	0.07	0.10	0.23	0.03	0.04	0.10	0.01	0.23
Delay (s)	15.0	15.4	2.8	13.9	14.4	4.4	32.9	8.6	32.3	6.5
LOS	В	В	Α	В	В	Α	С	Α	С	Α
95 th Queue (m)	21	59	7	11	42	4	12	10	5	0
	Inter	section D	elay			13.7	13.7 Intersection LOS			В

5.2.2 Lakeland Drive and Clarkdale Drive

Tables 5-4 through **5-6** summarize the results of the capacity analyses at the Lakeland Drive/Clarkdale Drive intersection during the AM peak hour and PM school peak hour based on existing, background, and total traffic scenarios.

Table 5-4: Lakeland Drive and Clarkdale Drive - AM Peak Hour (Unsignalized)

	Е	astbound Westbound			d	North	bound	Southbound					
Movement	L	Т	R	L	Т	R	L	R	L	R			
	2016 Existing – Unsignalized (N/S Stop Control)												
Geometry	L/T/T/R				L/T/T/R			′R	L,	/R			
Volume (vph)	12	285	17	14	271	35	117	137	123	88			
v/c	0.01			0.01			0.33	0.18	0.37	0.10			
Delay (s)	7.8			8.3			19.8	10.3	20.7	9.6			
LOS	Α	_		Α			С	В	С	Α			
95 th Queue (m)	0			0			11	5	12	2			
	Inter	section D	elay			6.4	Intersection LOS			Α			
		2021 E	Backgro	und – Un	signalized	(N/S Sto	p Control)						
Geometry		L/T/T/R			L/T/T/R		L,	′R	L/R				
Volume (vph)	115	392	17	14	327	170	117	137	295	208			
v/c	0.09			0.02			0.79	0.20	1.67	0.26			
Delay (s)	8.2			8.7			83.9	11.0	\$366.7	10.7			
LOS	Α			Α			F	В	F	В			
95 th Queue (m)	2			0			38	6	161	8			
	Inter	section D	elay			65.4	Int	ersection	LOS	F			

As shown in Table 5-4, the Lakeland Drive/Clarkdale Drive intersection currently operates at acceptable levels of service. However, with growth in Summerwood including the development of a school and general growth along Lakeland Drive, the southbound left turn movement is projected to be over capacity based on 2021 background traffic volumes.

The Lakeland Drive/Clarkdale Drive intersection is anticipated to be signalized in the future based on previous traffic studies completed for the surrounding area. Therefore, the intersection was re-assessed assuming the intersection was signalized within the five year horizon. The cycle length was assumed to be the same as the cycle length at the Lakeland Drive/Highway 21 intersection. As shown in Tables 5-5 and 5-6, the intersection of Lakeland Drive and Clarkdale Road is projected to operate at acceptable levels of service during the AM and PM school peak hours respectively based on 2021 background and total traffic volumes.

Table 5-5: Lakeland Drive and Clarkdale Drive - AM Peak Hour (Signalized)

	E	astbound		'	Westbound	l	North	bound	Southbound				
Movement	L	Т	R	L	Т	R	L	R	L	R			
2021 Background – Signalized (140s cycle)													
Geometry		L/T/T/R			L/T/T/R			′R	L/R				
Volume (vph)	115	392	17	14	327	170	117	137	295	208			
v/c	0.27	0.32	0.03	0.05	0.22	0.28	0.13	0.15	0.34	0.21			
Delay (s)	29.6	28.7	6.8	25.8	27.3	3.9	19.5	3.1	22.6	2.8			
LOS	С	С	Α	С	С	Α	В	Α	С	Α			
95 th Queue (m)	38	53	4	8	42	5	30	12	77	13			
	Inter	section D	elay			19.2	Intersection LOS			В			
			2021 7	Total – Si	gnalized (1	40s cycl	e)						
Geometry		L/T/T/R			L/T/T/R	L/R			L/R				
Volume (vph)	115	392	17	15	327	170	117	146	295	208			
v/c	0.27	0.32	0.03	0.05	0.22	0.28	0.13	0.15	0.34	0.21			
Delay (s)	29.6	28.7	6.8	25.7	27.3	3.9	19.5	3.1	22.6	2.8			
LOS	С	С	Α	С	С	Α	В	Α	С	А			
95 th Queue (m)	38	53	4	8	42	5	30	12	77	13			
	Inter	section D	elay			19.2	19.2 Intersection LOS			В			

Table 5-6: Lakeland Drive and Clarkdale Drive - PM School Peak Hour

	E	astbound		\	Westbound	l	North	bound	Southbound		
Movement	L	Т	R	L	Т	R	L	R	L	R	
		2016	Existin	g – Unsig	nalized (N	I/S Stop	Control)				
Geometry		L/T/T/R			L/T/T/R		L,	/R	L,	/R	
Volume (vph)	89	229	102	51	281	68	60	34	33	50	
v/c	0.07			0.04			0.28	0.06	0.13	0.08	
Delay (s)	8.0			8.0			25.7	9.7	21.8	9.6	
LOS	Α			Α			D	Α	С	Α	
95 th Queue (m)	2			1			8	2	4	2	
	Inter	section D	elay			4.1	Int	ersection	LOS	Α	
		20	021 Back	- Signalize	d (140s (cycle)					
Geometry		L/T/T/R		L/T/T/R			L,	/R	L/R		
Volume (vph)	206	293	102	51	372	198	60	34	137	149	
v/c	0.34	0.19	0.09	0.09	0.17	0.20	0.13	0.09	0.28	0.29	
Delay (s)	14.8	11.8	2.1	11.3	11.6	1.6	37.8	9.8	40.4	6.1	
LOS	В	В	Α	В	В	А	D	Α	D	А	
95 th Queue (m)	45	25	7	12	30	5	27	6	50	10	
	Inter	section D	elay			12.6	Int	ersection	LOS	В	
			2021	Total – Si	gnalized (1	40s cycl	e)				
Geometry		L/T/T/R			L/T/T/R		L,	/R	L,	/R	
Volume (vph)	206	293	102	56	372	198	60	34	137	149	
v/c	0.34	0.19	0.09	0.09	0.17	0.20	0.13	0.09	0.28	0.29	
Delay (s)	14.8	11.8	2.1	11.4	11.6	1.6	37.8	9.8	40.4	6.1	
LOS	В	В	Α	В	В	Α	D	Α	D	А	
95 th Queue (m)	45	25	7	13	30	5	27	6	50	10	
	Inter	section D	elay			12.6	Int	ersection	LOS	В	

5.2.3 Davidson Drive & Clover Bar Road

Tables 5-7 and **5-8** summarize the results of the capacity analyses at the Davidson Drive/Clover Bar Road intersection during the AM peak hour and PM school peak hour based on existing, background, and total traffic scenarios. Existing signal timings were provided by Strathcona County and were used in the assessment for existing and future conditions.

Table 5-7: Davidson Drive and Clover Bar Road - AM Peak Hour

	Eastbound			Westbound			Northbound			Southbound			
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
2016 Existing - Signalized (140s cycle, Pm+Pt NB L)													
Geometry	L/TR			L/TR			L/T/T/R			L/T/T/R			
Volume (vph)	36	9	66	148	92	51	113	612	44	33	395	70	
v/c	0.35	0.26		0.83	0.60		0.17	0.23	0.04	0.07	0.22	0.13	
Delay (s)	54.6	15.6		81.9	55.0		6.8	7.3	2.2	12.7	12.2	2.6	
LOS	D	В		F	D		Α	Α	Α	В	В	Α	
95 th Queue (m)	20	1		64	49		18	42	4	11	39	0	
	Intersection Delay					22.0		Inte	rsection	LOS	LOS C		
2021 Background – Signalized (140s cycle, Pm+Pt NB L)													
Geometry		L/TR		L/TR			L/T/T/R			L/T/T/R			
Volume (vph)	36	9	66	148	92	51	113	704	44	33	454	70	
v/c	0.35	0.26		0.83	0.60		0.19	0.26	0.04	0.08	0.25	0.13	
Delay (s)	54.6	15.6		81.9	55.0		6.9	7.6	2.2	12.8	12.5	2.6	
LOS	D	В		F	D		Α	Α	Α	В	В	Α	
95 th Queue (m)	20	1		64	50		18	49	4	11	46	0	
	Inters	ection D	elay		21.2			Intersection LOS				С	
2021 Total - Signalized (140s cycle, Pm+Pt NB L)													
Geometry		L/TR			L/TR			L/T/T/R			L/T/T/R		
Volume (vph)	36	11	66	160	92	51	113	704	72	33	454	70	
v/c	0.28	0.24		0.90	0.52		0.20	0.27	0.13	0.08	0.27	0.13	
Delay (s)	48.5	16.2		86.1	49.0		8.0	9.0	1.5	14.2	14.3	2.7	
LOS	D	В		F	D		Α	Α	Α	В	В	Α	
95 th Queue (m)	20	0		68	49		18	49	0	11	46	0	
Intersection Delay							Intersection LOS					С	

Table 5-8: Davidson Drive and Clover Bar Road - PM School Peak Hour

	Е	astboun	ıd	W	estbour	ıd	N	orthbou	nd	Southbound		nd
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
			201	6 Existin	g – Sign	alized (1	30s cyc	le)				
Geometry	L/TR			L/TR			L/T/T/R			L/T/T/R		
Volume (vph)	36	31	57	72	22	60	47	580	146	107	741	37
v/c	0.62	0.	72	0.87	0.	37	0.10	0.20	0.11	0.22	0.31	0.04
Delay (s)	74.6	52	2.7	124.2	23	3.4	4.5	3.9	0.9	5.1	4.5	1.2
LOS	E	[)	F	(С	Α	Α	Α	Α	Α	Α
95 th Queue (m)	17	1	8	#39	2	?1	7	27	5	15	40	2
	Inters	ection D	Pelay			14.5		Inte	rsection	LOS		В
			2021	Backgrou	nd – Sig	gnalized	(130s c	ycle)				
Geometry	L/TR			L/TR	L/T/T/R				L/T/T/R			
Volume (vph)	36	31	57	72	22	60	47	667	146	107	852	37
v/c	0.62	0.	72	0.87	0.	37	0.12	0.23	0.11	0.24	0.35	0.04
Delay (s)	74.6	52	2.7	124.5	23	3.4	4.8	4.1	0.9	5.3	4.7	1.2
LOS	E	Γ)	F	(С	Α	Α	Α	Α	Α	Α
95 th Queue (m)	17	1	8	#39	2	?1	8	32	5	15	47	2
	Inters	ection D	Pelay			13.8		Inte	rsection	LOS		В
			20	21 Total	– Signa	lized (1	30s cycle	2)				
Geometry		L/TR			L/TR			L/T/T/R			L/T/T/R	
Volume (vph)	36	31	57	74	22	60	47	667	153	107	852	37
v/c	0.62	0.	71	0.88	0.	37	0.12	0.23	0.13	0.24	0.35	0.04
Delay (s)	74.2	52	2.3	126.8	23	3.3	4.8	4.1	0.9	5.4	4.8	1.2
LOS	E	[)	F	(С	Α	Α	Α	Α	Α	Α
95 th Queue (m)	17	1	8	#40	2	21	8	32	6	15	47	2
	Inters	ection C	Pelay			13.8		Inte	rsection	LOS		В

As shown in Tables 5-7 and 5-8, the Davidson Drive/Clover Bar Road intersection is projected to operate at similar levels of service under existing, 2021 background, and 2021 total traffic volumes. The westbound left movement is currently operating at level of service F as a result of actuation during the AM and PM school peak hours; however, the v/c ratios are less than or equal to 0.90 indicating there is sufficient capacity to accommodate the movement. As well, the maximum green time could be increased to provide additional capacity to the east approach during the peak 15 minute period if required. There is sufficient capacity at the remaining approaches to accommodate this change.

5.2.4 Davidson Drive & Davenport Drive

Tables 5-9 and **5-10** summarizes the results of the capacity analyses at the Davidson Drive/Davenport Drive intersection during the AM peak hour and PM school peak hour based on existing, background, and total traffic scenarios. As shown in Tables 5-8 and 5-9, the Davidson Drive and Davenport Drive intersection is anticipated to continue to operate very well during the AM and PM school peak hours.

Table 5-9: Davidson Drive and Davenport Drive - AM Peak Hour

	Eastk	oound	North	Northbound		Southbound	
Movement	L	R	L	Т	Т	R	
2016 E	xisting & 20	21 Backgro	und – Unsig	nalized (EB S	Stop Contro	l)	
Geometry	L	.R	l	_T	٦	TR	
Volume (vph)	24	29	100	39	16	47	
v/c	0.	07	0.	.10			
Delay (s)	10).4	7	'.7			
LOS		В	Α				
95 th Queue (m)		2	2				
Inters	ection Delay	'	4.6	Intersec	tion LOS	Α	
	2021 T	otal – Unsig	nalized (EB	Stop Contro	l)		
Geometry	L	.R	LT		TR		
Volume (vph)	24	65	116	73	37	47	
v/c	0.	24	0.12				
Delay (s)	11.0		7	'.9			
LOS		В		A			
95 th Queue (m)		7		3			
Intersection Delay			4.9	Intersec	tion LOS	Α	

Eastbound Northbound Southbound Movement L R L Т Т R 2016 Existing & 2021 Background - Unsignalized (EB Stop Control) Geometry LR LT TR Volume (vph) 57 72 36 28 37 32 0.17 v/c 0.04 10.0 7.6 Delay (s) LOS В Α 95th Queue (m) 5 1 **Intersection Delay** 6.1 Intersection LOS Α 2021 Total - Unsignalized (EB Stop Control) TR Geometry LR LT Volume (vph) 57 82 44 36 59 32 v/c 0.25 0.06 Delay (s) 11.4 7.9 LOS В Α 2 95th Queue (m) 8 Intersection LOS **Intersection Delay** 5.7 Α

Table 5-10: Davidson Drive and Davenport Drive - PM School Peak Hour

5.2.5 Davenport Drive & Davenport Place

Tables 5-11 and **5-12** summarizes the results of the capacity analyses at the Davenport Drive/Davenport Place intersection during the AM peak hour and PM school peak hour based on existing, background, and total traffic scenarios.

As shown in Table 5-11, the south approach of the Davenport Drive/Davenport Place intersection is projected to go from level of service A under existing and background conditions to level of service F with the addition of school traffic. Longer delays and queues can be expected for northbound traffic. If a vehicle does not want to wait to complete the left turn movement, they could turn right onto Davenport Drive and find an alternate route to their destination.

It should be noted that the assessment assumes all student drop-off activity occurs within the on-site drop-off loop along Davenport Place. The projected v/c ratio, level of service, and queue for northbound traffic is anticipated to improve if a portion of student drop-off activity occurs along Davenport Drive. It should also be noted that the peak hour factors were adjusted to reflect all drop-off activity occurring between 8:15 AM and 8:30 AM. It is anticipated that intersection operations would improve if a portion of drop-off trips were to occur before or after the peak 15 minute period.

Table 5-11: Davenport Drive and Davenport Place - AM Peak Hour

	Eastl	oound	Westbound		Northbound	
Movement	T	R	L	T	L	R
2016 E	xisting & 20	21 Backgro	und – Unsigi	nalized (NB	Stop Contro	l)
Geometry	T	R	L	.T	L	.R
Volume (vph)	26	8	1	82	25	6
v/c			0.	00	0.	07
Delay (s)			8	.2	9	.6
LOS				A		A
95 th Queue (m)				0		2
Inters	ection Delay	/	2.9	Intersec	tion LOS	Α
	2021 T	otal – Unsig	nalized (NB	Stop Contro	l)	
Geometry	T	R	LT		LR	
Volume (vph)	26	27	68	88	80	64
v/c			0.	19	0.	97
Delay (s)			8	.0	63	3.9
LOS			A		F	
95 th Queue (m)				5	g)3
Intersection Delay		33.2	Intersec	tion LOS D		

Table 5-12: Davenport Drive and Davenport Place - PM School Peak Hour

	Eastk	oound	Westbound		Northbound	
Movement	T	R	L	Т	L	R
2016 E	xisting & 20	21 Backgro	und – Unsig	nalized (NB :	Stop Contro	l)
Geometry	T	R	L	.T	L	.R
Volume (vph)	60	17	7	35	5	3
v/c			0.	01	0.	02
Delay (s)			7	.5	9	.9
LOS				A	,	A
95 th Queue (m)				0		0
Inters	ection Delay	/	1.0	1.0 Intersection LOS		Α
	2021 T	otal – Unsig	nalized (NB	Stop Contro	l)	
Geometry	T	R	LT		LR	
Volume (vph)	61	51	43	35	22	62
v/c			0.	12	0.	47
Delay (s)			8	.2	1.	5.1
LOS				A		С
95 th Queue (m)				3	1	9
Intersection Delay			8.0	Intersec	tion LOS	Α

As shown in Table 5-12, the south approach of the Davenport Drive/Davenport Place intersection is projected to operate very well during the PM school peak hour. All-way stop control is not anticipated to be required during the PM school peak hour.

The implementation of an all-way stopped controlled intersection would improve operations during the AM peak hour as shown in **Table 5-13**; however, it would impose unnecessary delay to east-west movements during all other hours of the day. Unnecessary stop controls can lead to higher noncompliance and decreased safety. Therefore, it is recommended that the intersection of Davenport Drive and Davenport Place be monitored once the school is open and traffic patterns to/from the school have been established to determine if all-way stop control is required.

		-		-	-	-
	Eastk	oound	West	bound	Northbound	
Movement	T	R	L	Т	L	R
AM Pe	ak Hour - 2	021 Total -	Unsignalize	d (All-Way St	op Control)	
Geometry	T	R	L	.T	L	_R
Volume (vph)	26	27	68	88	80	64
v/c	0.	17	0.	58	0.	.66
Delay (s)	9	.8	1!	5.9	17	7.8
LOS	A		С		С	
95 th Queue (m)	5		29		3	38
Inters	ection Delay	/	16.1	Intersection LOS C		С
PM Schoo	l Peak Hour	· - 2021 Tota	ıl – Unsigna	lized (All-Wa	y Stop Cont	rol)
Geometry	T	R	LT		LR	
Volume (vph)	61	51	43	35	22	62
v/c	0.	33	0.	26	0.41	
Delay (s)	10.1		9.9		10.8	
LOS	В		В		Α	
95 th Queue (m)	1	1	8		1	5
Intersection Delay		10.3	Intersec	tion LOS	В	

Table 5-13: Davenport Drive and Davenport Place - All-Way Stop

5.2.6 Davenport Drive & Clarkdale Drive

As shown in **Tables 5-14** and **5-15**, the Davenport Drive/Clarkdale Drive intersection is projected to operate well during the AM and PM school peak hours based on existing, background, and total traffic volumes.

Table 5-14: Davenport Drive and Clarkdale Drive - AM Peak Hour

	Eastbound		North	bound	Southbound	
Movement	L	L R		Т	Т	R
2016 E	xisting & 20	21 Backgro	und – Unsig	nalized (EB S	Stop Contro	l)
Geometry	L	.R	L	.T	TR	
Volume (vph)	31	22	20	98	27	9
v/c	0.	07	0.	04		
Delay (s)	9	.8	7	.7		
LOS	,	A	Α			
95 th Queue (m)		2	1			
Inters	ection Delay	/	3.3	Intersec	tion LOS	Α
	2021 T	otal – Unsig	nalized (EB	Stop Contro	l)	
Geometry	L	.R	LT		TR	
Volume (vph)	45	60	75	98	27	18
v/c	0.	42	0.18			
Delay (s)	15.4		8.0			
LOS	(С	A			
95 th Queue (m)	1	6	5			
Intersection Delay		8.3	Intersec	tion LOS	Α	

Table 5-15: Davenport Drive and Clarkdale Drive - PM School Peak Hour

	Eastk	oound	North	bound	Southbound	
Movement	L	R	L	Т	Т	R
2016 E	xisting & 20	21 Backgro	und – Unsig	nalized (EB S	Stop Contro	l)
Geometry	L	.R	L	_T	TR	
Volume (vph)	11	30	31	53	91	15
v/c	0.	06	0.	.03		
Delay (s)	10	0.1	7	'.9		
LOS		В	А			
95 th Queue (m)		2	1			
Inters	ection Delay	/	2.6	Intersec	tion LOS	Α
	2021 T	otal - Unsig	nalized (EB	Stop Contro	l)	
Geometry	L	.R	LT		TR	
Volume (vph)	18	76	55	53	91	24
v/c	0.	33	0.09			
Delay (s)	11.8		8	5.0		
LOS		В		A		
95 th Queue (m)	1	1	2			
Intersection Delay			6.9	Intersec	tion LOS	Α

5.2.7 Davenport Drive Staff Access

The Davenport Drive staff access is to be used by staff members only during school hours, and should not be used for student pick-up and drop-off activities. As shown in **Table 5-16**, the Davenport Drive staff access is projected to operate at excellent levels of service during the AM and PM school peak hours.

Eastbound Westbound Northbound Movement Т R L R AM Peak - 2021 Total - Unsignalized (NB Stop Control) Geometry TR LT LR 53 Volume (vph) 43 7 161 0 0 v/c 0.02 Delay (s) 7.7 0 LOS Α Α 95th Queue (m) 1 **Intersection Delay** 0.4 Intersection LOS Α PM School Peak - 2021 Total - Unsignalized (NB Stop Control) LR Geometry TR IT Volume (vph) 111 0 0 57 3 1 0.02 v/c Delay (s) 9.6 0 LOS Α Α 95th Queue (m) 0 1 Intersection Delay 0.7 Intersection LOS Α

Table 5-16: Davenport Drive Staff Access

5.2.8 Davenport Place Student Access

The student access is proposed to be a one-way loop road with two access points along Davenport Place. The north access accommodates inbound movements only and the south access accommodates outbound movements only. No stop control is provided at the north access and all movements are considered free flow; therefore, a capacity assessment of the north access was not completed. **Table 5-17** summarizes the results of the capacity assessment completed at the south student access during the AM and PM school peak hours based on 2021 total traffic volumes.

Volume (vph)

v/c

Eastbound Northbound Southbound Т Movement L R AM Peak Hour 2021 Total - Unsignalized (NB Stop Control) Geometry LR Т

10

112

0.54

Table 5-17: **Davenport Place Student Access**

45

Т

Т

9

Delay (s)	13	3.4				
LOS		В				
95 th Queue (m)	2	?5				
Inters	section Delay		11.1	Intersec	tion LOS	В
PM School Peak Hour 2021 To			tal – Unsign	alized (NB S	top Control)
Geometry	LR		Т		Т	
Volume (vph)	76	76 12		4	2	24
v/c	0.	37				
Delay (s)	10	0.9				
LOS		В				
95 th Queue (m)	1	3				
Inters	section Delay		9.6	Intersec	tion LOS	Α

As shown in Table 5-17, the Davenport Place student access is projected to operate very well from a capacity perspective during the AM and PM school peak hours.

5.3 Additional Transportation Considerations

5.3.1 School Zone/Area Assessment

Within Strathcona County, a school area is indicated by a green school sign without a black and white speed sign attached to the post. It is a warning to alert drivers that a school is near and to be cautious that children may be close by. The speed limit does not change from the previously posted limit, but vehicles should drive through the area with extra caution.

A school zone has a black and white 30 km/h sign attached below the green school sign. When you pass this sign, you have entered a school zone and must stay within the maximum posted speed during the times the zone is in effect. In Strathcona County, the school zone speed limit is in effect between the following times on school days:

- 8:00 AM and 9:30 AM
- 11:30 AM and 1:30 PM
- 3:00 PM and 4:30 PM

Alberta Transportation's Guidelines for School and Playground Zones and Areas were reviewed to determine if school zones or areas are warranted along Davenport Drive and Davenport Place in the vicinity of the school. The school zone/area warrant methodology awards points based on a range of criteria including type of school, fencing, roadway classification, property line location, school entrances, and sidewalk locations. **Table 5-18** summarizes the warrant scores for the different types of school zone categories.

Table 5-18: School Zone Results Matrix

Total Score	Area or Zone?
0-40	Nothing
41-64	School Area
65-80	School Area or School Zone
81-100	School Zone

Table 5-19 summarizes the results of the school zone/area warrants for Davenport Drive and Davenport Place. The completed worksheets can be found in **Appendix C**.

Table 5-19: School Zone/Area Warrant Results

Roadway	Total Score	Area or Zone?
Davenport Drive	68	School Area or School Zone
Davenport Place	80	School Area or School Zone

As shown in Table 5-19, a school area or school zone is warranted along Davenport Drive and Davenport Place. It is noted that this review is specifically for the school and does not reflect the existing playground on the northwest corner of Davidson Creek Park. Where a school and playground are located adjacent to one another, the need to designate a Zone or Area for each facility should be reviewed separately. Based on Alberta Infrastructure and Transportation's Guidelines for Schools and Playground Zones and Areas, if it is established that a school zone and a playground zone are necessary for the adjacent fronting section of the same roadway, then only a single zone should be provided, in order to convey a simple and unambiguous message to motorists. In general, it is suggested that a playground zone be installed, to provide coverage over a more extended period of the school days as well as on non-school days.

As both Davenport Drive and Davenport Place are currently playground zones in the vicinity of the existing playground and proposed school, it is recommended that the existing playground zone with a posted speed limit of 30 km/h remain to provide coverage over an extended time period.

5.3.2 Active Modes

Alberta Education provides transportation funding for all eligible students to receive free transportation to their designated school. An eligible student is defined as a student residing greater than 2.39 km from their designated school. Based on a review of the existing pedestrian facilities, the entire Davidson Creek and Clarkdale Meadows neighbourhoods are anticipated to be within a 2.39 km walking distance of the proposed school site. Therefore, a 'payride' fee would be charged for bussing to the school.

Approximately 65% of the catchment area is within a 1.0 km walking distance or approximately 15 minute walking distance of the school. The promotion of walking and cycling to school will lead to a more sustainable reduction in congestion and safety issues around the school. Ways to promote active modes could include, but are not limited to:

- Developing safe routes to school maps with input from students and parents;
- Enhancing pedestrian safety with crossing guards at crosswalks in proximity to the school;
- Ensuring facilities are kept free of snow; and
- · Creating walking/cycling school buses.

5.3.3 Pedestrian Crossing Control

Based on a review of Transportation Association of Canada (TAC) Pedestrian Crossing Control Guide, December 2012, pedestrian crossings within a school area should include the following recommended components:

- side-mounted signs on both sides of the road;
- zebra crosswalk markings;
- advanced warning sign where visibility is limited; and
- stopping prohibition for a minimum of 15m on each approach to the crossing, and 10m following the crossing.

Other desirable or optional components include:

- stopping prohibition for a minimum of 30m on each approach to the crossing, and 15m following the crossing;
- in-street school crosswalk sign; and
- crossing guards.

5.3.4 Student Drop-off/Pick-up Queuing Needs

AM drop-offs are anticipated to have a high turnover rate, meaning vehicles will occupy spaces for shorter amounts of time as compared to the PM pick-ups where a vehicle would typically stay in a space longer while waiting for students to leave the school. Due to the increased dwell time, the amount of spaces required for pick-up can be more than for drop-off.

It is preferable for schools to accommodate student drop-off and pick-up on-site; however, it is difficult to predict the number of private vehicles that need to be accommodated for the student drop-off and pick-up queue. Based on a study completed in Houston, an expectation of a maximum parent vehicle queue representing one vehicle for 6% of the students with an allowance of seven metres per vehicles was determined. If this was applicable to Davidson Creek elementary school, a maximum queue of 36 vehicles (252 m) would be expected.

It is anticipated that the 10 loadings spaces provided within the drop-off loop is sufficient to accommodate the AM drop-offs due to high turnover rates and low dwell times. Due to the increased dwell times of the PM pick-ups, it is anticipated that more than 10 loading spaces may be required during the PM pick-up period. If the queues cannot be accommodated on-site, vehicles will queue along Davenport Place and Davenport Drive.

The Institute of Transportation Engineers Traffic Engineering Council's *School Site Planning, Design, and Transportation* provide the following points to be considered when designing a student drop-of and pick-up area:

- Sufficient parent vehicle queuing must be provided or parent vehicles will wait where most convenient, including between parking aisles, along fire lanes, in the middle of traffic lanes, or along adjacent neighbourhood streets;
- A wide paved waiting area for students, preferably with shade or shelter from adverse weather conditions, will promote use;
- A well trained group of staff or volunteers can help ensure the drop-off and pick-up area operates as
 designed by assisting children in and out of vehicles, as well as ensuring drivers remain in their
 vehicles and pull all the way forward;
- A student waiting area at the far end of the vehicle queuing area will enable maximum on-site vehicle queuing and minimize the chance of back-ups onto the adjacent streets; and
- A site designed with flexibility will enable a school to modify a student drop-off and pick-up process, as needs and parent vehicle volumes change over time.

Having an established process can allow for the loading process to be safe, efficient, organized, and move quickly. A safe and efficient student pick-up/drop-off plan can improve traffic conditions around the school and increase safety. An example best practice student loading process from NCDOT is provided in **Appendix D**.

Other school policies that could reduce congestion include:

- Wider arrival windows;
- Early release for walkers and bicyclists; and
- Early arrival policies.

5.3.5 Bus Drop-off/Loading Review

Bus drop-off and loading is proposed to occur off-site along the south side of Davenport Drive. To ensure the bus drop-off area is available during bus drop-off and loading timeframes, 'No Parking' or 'No Stopping' signage with appropriate time restrictions should be installed. Time restrictions could be between 7:00 AM and 9:00 AM and 1:30 PM and 3:30 PM.

Outside of the restricted hours, the bus drop-off area could be used for visitor parking and/or drop-off and pick-up activity. However, it is recommended that the bus loading area be monitored to determine if illegally parked vehicles are impacting bus operations during the specified no parking or no stopping time limits. If an issue is identified, the County or EIPS may decide to ban parking and drop-off at all hours within the bus drop-off area.

The student loading area should be of suitable size to allow large groups of waiting students and teachers to congregate. Sidewalks immediately adjacent to the curbside drop-off area should be a minimum of 2.0 metre wide monowalks.

5.3.6 On-Street Parking

Although it is preferable to accommodate designated passenger loading on-site, there is the potential for on-street drop-off and visitor parking to occur along the south side of Davenport Drive. Drop-off along the north side of Davenport Drive and the east side of Davenport Place should be discouraged as it would require students to cross the street and could interfere with resident driveways. Consideration could be given to installing 'No Stopping' signs with time limits along the north side of Davenport Drive and east side of Davenport Place. Time limits could be between 8:00 AM and 4:30 PM on school days to make drop-off/pick-up and/or parking illegal in this location during school hours. However, it is noted that the implementation of no stopping time restrictions would impact residents during school hours; therefore, no stopping signs should only be considered through consultation with affected residents.

5.3.7 Education and Encouragement

Strategies and tactics to address traffic circulation and safety issues at schools do not exclusively represent physical improvements. Education, encouragement, and enforcement solutions, as well as school policies that address arrival and dismissal times and define expectations for parents and students should also be part of an overall school traffic mitigation toolbox. The majority of these strategies are intended to reduce the number of vehicles generated by a school. Strategies and tactics that could be considered include:

- Educating parents about unsafe driving behaviours and school transportation policies.
- Encouraging students to walk or bike to school.
- Encouraging carpooling.
- Mapping out safe pedestrian routes.
- Implementing a walking or cycling school bus program.
- · Increasing school busing.
- Employing targeted police enforcement.
- Issuing school parking lot 'citations' or warnings.
- Varying arrival and departure times (i.e. by grade, by mode) to reduce the number of students arriving at or leaving school simultaneously.

5.3.8 Community Concerns

EIPS hosted two public open houses at Lakeland Ridge School on September 20 and 28, 2016. The following community concerns regarding transportation were raised during these meetings. These concerns may not represent all community concerns; however, they represent the most common topics.

Speeding

A concern with speeding throughout the neighbourhood was a consistent message received from the community. A speed study was not completed as part of this assignment; therefore, Bunt & Associates cannot comment on the validity of this concern. The concern with speeding is an existing condition and is unrelated to the addition of a school. Therefore, the County may want to consider conducting a speed study in the area to validate the concern, and depending on the outcome of the speed study, explore traffic calming measures to mitigate the issue.

Darlington Drive

Concerns were raised regarding school traffic using Darlington Drive to exit the community. With the student drop-off located along Davenport Place, there is the potential that parents exiting the drop-off loop turn right onto Davenport Place instead of turning left towards Davenport Drive. However, Darlington Drive is a narrow, winding, local roadway and does not provide a direct route to the adjacent collector and arterial roadway. Community members also cited long delays for existing northbound left turns from Darlington Drive onto Davidson Drive during the AM peak hour. Therefore, Darlington Drive may not be heavily used by school traffic due to the existing design and operations.

Other schools in the County have implemented left turn bans exiting student drop-off areas. However, the left turns were banned where left turn movements were difficult to complete due to traffic volumes on the adjacent roadway. The left turn ban reduces delays at the intersection thereby reducing on-site queuing and improving drop-off operations.

The student drop-off access at the Davidson Creek school is not anticipated to have the same operational issues as other County schools. As Davenport Place is a low volume roadway there will be limited traffic opposing vehicles exiting the student drop-off; therefore, there is no reason to ban left or right turning traffic from an operations perspective. Banning right turns onto Davenport Place would likely be ineffective unless constantly enforced, but could be considered if school traffic along Darlington Drive was an issue in the future.

The installation of all-way stop control at the Davenport Drive/Davenport Place intersection may encourage parents to use Davenport Drive as opposed to Darlington Drive. All-way stop control would reduce queues and delay for northbound vehicles during the AM peak hour, making it easier for vehicles to get to Davenport Drive. However, as previously mentioned, all-way stop control would impose unnecessary delay to east-west movements along Davenport Drive during all other hours of the day. Unnecessary stop controls can lead to higher noncompliance and increased conflicts and require regular police enforcement. The intersection should be monitored to determine if all-way stop control is warranted in the future.

Arterial Intersection Operations

Community members cited existing issues exiting the neighbourhood during the AM peak hour via the Clover Bar Road/Davidson Drive, Lakeland Drive/Davenport Drive, and Lakeland Drive/Clarkdale Drive intersections.

As noted in Section 5.2, increasing the maximum green time along Davidson Drive would help improve operations at the Clover Bar Road/Davidson Drive intersection. The Lakeland Drive/Davenport Drive and Lakeland Drive/Clarkdale Drive intersections should be monitored to determine if and when signalization is required. With the addition of a traffic signal along Lakeland Drive, it is also anticipated that operations at the Clover Bar Road/Davidson Drive intersection would improve as some existing traffic may reroute to Lakeland Drive instead of Clover Bar Road.

6. CONCLUSIONS & RECOMMENDATIONS

Based on the assessment completed, the proposed Davidson Creek school is anticipated to generate in the order of 271 two-way trips in the AM peak hour, 168 two-way trips in the PM school peak hour, and about 774 two-way trips on a typical school day. Overall, the existing roadway network is anticipated to accommodate the traffic generated by the proposed school. The following recommendations are advanced:

- Signalize the Lakeland Drive/Clarkdale Drive intersection to accommodate growth within Summerwood North and general growth along Lakeland Drive.
- Monitor the Lakeland Drive/Davenport Drive intersection as Summerwood North and Davidson Creek school develop to determine if and when signalization is warranted.
- Monitor the intersection of Davenport Drive and Davenport Place once traffic patterns to/from the school site are established to determine if all-way stop control is required.
- Maintain the existing playground zones along Davenport Drive and Davenport Place with a 30 km/h speed limit in the vicinity of the proposed school.
- Ensure the on-site loading lane is not used as parent parking during AM and PM peak period time
 frames. Unattended vehicles in pick-up/drop-off zones, even for short stops, should not be allowed
 (and should be enforced). Designated visitor parking spaces and/or on-street parking should be used
 for this purpose during the AM and PM school peaks.
- A designated drop-off zone should be established at the far end of the loading lane to ensure a
 continuous flow of vehicles. Queued vehicles within the lane should wait until they reach the drop-off
 zone before allowing their passengers to exit. Adult supervisors available to group children and escort
 them inside reduce the inclination for parents to exit their vehicles.
- During peak student pick-up, a waiting area for students at the far end of the zone should be
 established to maximize the effective length of curb space. Vehicles at the far end of the zone should
 load simultaneously. Once these vehicles have pulled away, the next group of vehicles should move
 forward to be loaded at the student waiting area.
- Highly visible adult loading supervisors should facilitate loading and unloading and ensure that drivers remain in their vehicles.
- Discourage drop-off activity along the north side of Davenport Drive and the east side of Davenport
 Place to eliminate unnecessary pedestrian crossings and reduce driveway access interference with
 residents fronting onto Davenport Drive. Through consultation with affected residents, 'No Stopping'
 zones could be established on school days between 8:00 AM and 4:30 PM to make drop-off/pick-up
 and parking illegal in these locations during school hours.

- The curbside bus loading area should be of suitable size to allow large groups of waiting students and teachers to congregate.
- Allow drop-off/pick-up activity or visitor parking in the bus loading area outside of bus loading times, and monitor the area to determine if parked vehicles are impacting bus operations. If an issue is identified, parking and drop-off may be banned at all hours within the bus loading area.
- Ensure pedestrian crossings within the school area have side-mounted signs on both sides of the road, include zebra crosswalk markings, and prohibit stopping for a minimum of 15m on each approach to the crossing and 10m following the crossing.
- Enhance pedestrian safety through the presence of crossing guards at crosswalks in proximity to the school to encourage parents to allow children to use alternative modes.
- Consider strategies and tactics to address traffic circulation and safety issues that do not exclusively represent physical improvements such as:
 - o Educate parents about unsafe driving behaviours and school transportation policies.
 - Educate parents about having their children choose alternative transportation modes to and from school.
 - o Encourage students to walk or bike to school.
 - o Encourage carpooling.
 - o Implement a Walking or Cycling School Bus Program.
 - o Employ targeted police enforcement.
 - o Issue school parking lot 'citations' or warnings.
 - o Provide maps and instructions to parents on the school websites and in newsletters to describe the location and operation of the loading zone.
 - Vary dismissal time by mode or grade to reduce the number of students arriving at or leaving school simultaneously and reinforce these messages with regular communications about the rules through driveway monitors.
 - Encourage parents to comply with traffic controls with random rewards.

APPENDIX A

Traffic and Parking Counts

		<u> </u>		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	South Approach EW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	South Approach Approa	пп
	Pedestrians West North Approach Approach N/S E/W 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0	0	West North N	382 46 == 362
	East W Approach Approach N/S N N N O O O O O O O O O O O O O O O O	0	East Mapper Mark Mark Mark Mark Mark Mark Mark Mar	PM Peak Hour 3:15 PM to 4:15 PM
	Totals A Total A Tota	1123 4% 0.94 1.82	Hourty Totals 10	389
	Right HV 24 33 0 24 28 2 27 28 2 27 18 0 28 2 27 18 0 28 2 27 28 2 27 28 2 27 28 2 27 28 2 27 28 2 27 28 3 2 20 28 2 28 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	123 2% 0.88 1.73	Right Car HV 185 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 73 1 112 112 112 112 112 112 112 112 112
	Southbound Thru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 #DIV/01 #DIV/01	Southbound Car Thou C	88 88 89 89 89 89 89 89 89 89 89 89 89 8
	Car Left 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42 5% 0.53 1.62	Car Left Car HV Car Car HV Car Car HV Car	± 332 229
	Right Car HV 16 0 1 12 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1	61 5% 0.76 1.89	Right HV 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	Northbound Thru Car Hru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 #DIV/0! #DIV/0!	Northbound Thru Total Car HV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1
	Left HV Car HV 15 0 115 0 115 114 11 114 11 115 0 110 110 110 110 110 110 110 11	62 3% 0.91 1.65	/ Car HV	Hour 638 638 AM
	Right V Car HV Car HV 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29% 1.75 2.29	Right (-7 Car HV (-8 HV	AM Peak Hour 7:30 AM to 8:30 AM 7 7 7 7 66 868 46 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Westbound Thru Thru 177 1 177 1 2 135 5 2 135 5 2 146 3 3 146 3 140 4 1 101 1012 23 1035	3% 3% 1.04	Westbound Thru Car HV C	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ht ht Car Left HV Car 13 0 0 13 0 0 7 1 65 1 1 65 1 1 65 75	46 15% 9 1.92	Keland Drive Left H.V. Car Fig. 1.23 2.25 1.50 1.33 3.39 3.39 3.39	1165 153 154 155 157
3483.01 Lakeland Drive and Davenport Drive Wednesday May 11tl Clear MIO	Eastbound Thru Thru Right 66 2 4 4 67 1 0 0 748 2 2 2 748 2 2 2 748 2 0 0 748 2 0 0 748 2 0 0 748 2 0 0 748 2 0 0 748 3 2 4 748 3 2 4 748 3 2 4 748 3 2 4 748 3 2 4 748 3 2 4 748 3 3 3 4 748 3 5 748	157 11 3% 0% 0.80 0.65 2.13 1.97	Eastbound Thru Thru Car HV Car G 70 1 10 70 2 13 80 1 6 90 2 13 109 2 14 144 0 15 127 0 20 138 3 17 127 0 13 1511 199 1511 199 1511 199 1511 199 1511 199	
01 and Drive and I iesday May 11t	East T T T T T T T T T T T T T T T T T T T	30 AM to 8:30 AM 29 1 29 1 7% 3 0.91 0.91 0.91 2.10 2.10 2.10	888 888 887 747 75 888 888 888 887 747 75 75 75 75 75 75 75 75 75 75 75 75 75	\$ 12
	:00 AM :115 AM :45 AM :45 AM :15 AM :45 AM	Total	330 PM 445 PM 44	o ‡
Project No. Location Date Weather Surveyor	Street Direction Movement Start time 7 7 7 7 7 8 8 8 8 1 Total Total	Peak hour Peak Hour % HV PHF 2 Hr Facto	Direction Movement Start time Start time 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

				o ⇔ ⇔
	South Approach EW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		South Approach O O O O O O O O O O O O O	
	North Approach EW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	intans North North Approach 0 0 0 0 0 0 0 0 0 0 0 0 0	400
	West Approach N/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	Pedes West Approach N/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	our 4:15 PM ≃ 296
	East Approach N/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	E ast Approach N/S	PM Peak Hour 3:15 PM to 4:15 PM
	Hourly A Totals 1096 1099 1084 985 866 1099 1099	099 3% .94 .79	Hourty Totals 730 824 910 1175	3. P
	70tal	- 0 +	156 167 167 178 178 178 178 178 178 178 178 178 17	157
	Right HV 27 0 19 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	88 2% 0.96 1.99	Right HV 13	arkdale
	Southbound Thru Car HV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 #DIV/0! #DIV/0!	Southbound Thru O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 223 1029
	£ 00000-00-	81.088	¥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108
	Left Car 1 35 36 32 32 32 22 25 16 8 8 8 207 208 2	123 0% 0.93 1.69	Car Left 11 11 12 12 137 137 103 137 103 104	\$ 420
	Right Car HV 47 0 38 0 0 38 0 0 27 1 1 4 0 16 0 15 23 1 1 2 23 2 23 23 23 23 23 23 23 23 23 23 23	137 1% 0.90 1.72	Clark Right HV Car Plant Right HV Car Plant Right HV Car Plant Right HV Car Plant Right Ri	ω ⇔ Φ
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Northbor Thru Car 1- 0 0 0 0 0 0 0 0 0	0/NIQ# 0/NIQ#	Morthbound Thru Thru Thru 1000000000000000000000000000000000000	o ‡
	£ 0 - 0 0 + 0 0 4	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	± 1 0 0 0 0 1 1 0 0 0 0 1 4 0 2 8 8	1 _
	Car Car 20 20 20 20 20 20 20 20 20 20 20 20 20	3% 3% 1.5.	Car Left 11 11 11 11 11 11 11 11 11 11 11 11 11	0our 8:15 AM
	Right Car HV	35 9% 0.73 1.66	Right Right HV 2	7:15 AM to 8:15 AM 7:15 AM to 8:15 AM [
	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	j-1-1-21-0441-22-28-41-22	35 7.7 14 14 14
	Westbor Thru Car + 49 69 66 66 66 66 66 67 71 66 66 67 71 68 71 71 71 71 71 71 71 71 71 71	271 6% 1.17 1.89	Westbou Westbou Westbou Westbou Thru Carl Thru 232 101 1089 1062 1089	2 = = = = = = = = = = = = = = = = = = =
	H H H H H H H H H H H H H H H H H H H	14 14% 0.88 2.21	1 Left	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Sland Drive Car Left 2 2 2 3 3 3 3 6 6 6 6 6 6 6 6 7 3 3 3 3 3 3 3	2 0 7	Ca C	2 2 21 2 21 2 1 1 1 1 1 1 1 1 1 1 1 1 1
9	19 19 19 19 19 19 19 19 19 19 19 19 19 1	17 29% 1.06 2.88	Right H H H H H H H H H H H H H H H H H H H	12 128 17
ale Driv	0 4 2 4 8 8 2 7 1 1 4		3 4 2 5 8 8 8 2 2 2 8 8 8 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
d Clarkd	stbound Thru Thru HV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 285 1% 0.79 1.66	astbound Thru Thru Thru Thru Thru Thru Thru Thru	476
rive and lay 12th	Ea Ca 711 711 711 711 711 711 711 711 711 71	8:15 AP	11 0 4 0 4 4 4 C C O O C O C C C C C C C C C C C	1
3483.01 Lakeland Drive and Clarkdale Drive Thursday May 12th.; Clear MIO	Left Car HV 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7:15 AM to 8:15 AM 12 2 0% 7 3.00 0 3.00 1	Left HV C C C C C C C C C C C C C C C C C C	o
0 J F U Z	7:00 AM 7:15 AM 7:15 AM 7:45 AM 8:15 AM 8:30 AM 8:35 AM	otal	2.230 PM 3.300 PM 3.300 PM 3.300 PM 4.415 PM 4.415 PM 4.415 PM 4.415 PM 5.300 PM 6.515 PM 6.515 PM 7.515 PM 7.515 PM 8.530 PM 8.530 PM 8.530 PM	1
Project No. Location Date Weather Surveyor	Street Movement start time 7.0 7.1 7.1 7.1 7.1 8.1 8.1 Total	Peak hour Peak Hour To % HV PHF 2 Hr Factor	Street Direction Direction Spart time 23 24 40 40 40 40 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	
				_

									2	
	South Approach EW 0 0 0 1	7		App	13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 46				
	Approach EW 0 0 0 0 5 5 5 5 5	MOO	strians	App	35	10			154	
	Pede West Approach N/S 0 0 0 0	7007	Pad.	> Id	25		Hour	o 4:15 PM	584	
	East Approach N/S 1 0 0	0000		East Approach N/S 1 1 4 4	00000000	2	PM Peak Hour	3:15 PM t		
		1 159 78 1669 78 1669 78 1669	4% 0.86 1.66	1 F	444 1943 445 1936 434 1831 432 1755 481 1792 539 1886 474 1926 468 1962 495 1976	1936 2%	0.0 Îţ	9	77 8 60 22 22 72 72	<u>р</u>
	Right ar HV 284 1 0 284 1 0 308 1 1 3 341 1 400	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10% 0.58 1.13		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	21	- 1	1 676	741 107 1	↑ 773
	S C C A M A	2 1 7 2	+++	0 1/4	3 3 6 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9	6	\$85	37 33 dayay 31 ⇒ 57 Blov 47	870
	Southbo Thr Car 61 63 63 87	107 107 54 623 646 395	0.77	<u> </u>	160 176 188 186 190 203 181 184 219 2480	741	0.81			
	Left Car HV 4 1 1 9 0 0 5 5 0	8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3% 0.92 1.82	# ±	22 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	107	0.76		124	
	Right Car HV 6 0 6 0 6 11 0 11 0 0 11 0 11 0 11 11 11 11 11 11	5 4	1.64 Clover B	g #	338 0 225 0 255 0 36 0 40 0 28 0 41 0	146	1.07		□	
	hhru HX HX 2 2 2 4	22 22 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2% 1.00 1.78	hru HY 1 1 1 2 7 7	77 - 0 - 1 - 0 - 0 - 0 - 1	580 2%	41			
	Nor HV Ca 0 95 0 112 1 140 0 156	150 100 100 100 100 100 100 100 100 100	2 8 2	≥ - ~ - 0 0	0 149 0 109 0 108 0 158 0 157 0 157				← ⇔	
	Car 1 2 2 2 2 2 2 2 2 2		3%.	_	11 7 7 7 7 7 7 7 8 8 8 9 110 1156 1156 1156 1156 1156 1156 1156	47	6:0	Hour o 8:45 AM	291	,
	Right Car HV 15 0 19 0 17 10 11 10 10 11 11 11 11 11 11 11 11 11	<u>7</u>	8% 0.85 2.29	ig –	10 0 20 1 13 0 7 7 0 21 0 19 0 115 0 116 0 116 0	% <u>/</u>	1.88	AM Peak Hour 7:45 AM to 8:45 AM	□	
	Westbound Thru Car HV 4 0 5 0 1 0 110 0	108	4% 0.66 1.17	Stbou	88 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 5%	0.92	1 669	133 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	11 11
	1 2 2 1 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4% 0.76 1.85	± + 0 − 0 − ± ± ± 0 − 0 − − − − − − − − − −	0	32/ 72 3%	1.13		395 (decomposed) (
g	Right Car 3 0 28 1 0 30 9 0 30 9 0 30 50 50 50 50 50 50 50 50 50 50 50 50 50	24 48 28 28 28 28 28 28 28 28 28 28 28 28 28	% 32 70		2 14 2 14 2 14 0 21 0 25 0 21 0 20 0 20 0 20 0 20 0 20 0 20 0 20	2 2 %	8	498 U	70 36 台av 9 → 9 66 倒ov 113	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
/er Bar Roa	0		1.7	0 0 0 1 0 1	0 0 8 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 4%	0.6			
ve and Clov ay 19th, :	Eastbound Thru Car HV 0 0 0 2 0 2 0 2 0 1 0 0	<u></u>	0% 0.45 1.89	Thru	4 0 0 0 0 4 - 0 0 0	31 37 38	0.48		11 1	
3483.01 Davidson Drive and Clover Bar Road Thursday May 19th, : Clear MIO	Left Car HV 11 0 13 0 9 0 8 8 0	36 AM t	14% 0.75 2.06	E T T T T T T T T T T T T T T T T T T T	7	3:15 PM to 4:15 PM 36 36 3	0.45		7 th	
	7:00 AM 7:15 AM 7:45 AM 8:00 AM	8:15 AM 8:45 AM	tor	2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM	3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	- Total	tor			
Project No. Location Date Weather Surveyor	Street Direction Movement start time 7 7 7 7 7 7 7 8	Total Total Peak hour	% HV PHF 2 Hr Fac	Direction Movement start time 22 22 23 33 33	Total	Peak hour Peak Hour Weak Hour	PHF 2 Hr Fax			

				o
	East West North South North South North South North South North South Approach App	0 0 1	East West North South Approach	PM Peak Hour 3:15 PM to 4:15 PM
	Monty Total Hourty Car Hourty Car Hy 1048 1048 1058	16 47 255 6% 4% 5% 0.67 0.69 0.76 1.75 1.38 1.54	Southbound Total Houry Total HV Car HV Car HV Car HV 10 0 111 0 57 2 1 8 0 61 11 0 0 71 0 57 2 1 8 0 62 12 0 9 1 0 66 13 0 9 1 0 67 13 0 11 0 0 71 135 141 2 890 291 135 141 2 890 291 135 141 2 890 291 135 141 2 890 291 135 141 2 890 291 137 32 262 37 37 37 37 37 362	13.1 (19) (19) (19) (19) (19) (19) (19) (19
	Daverport Drive Southbound Thru Right Thru Carl HV	39 0 0 0 37.	Northbound	2 129 == 68
	Sebound Right Left Thu Car HV Car	0 100 101 #DIVIOI 7% 001 #BIVIOI 0.69 001 #BIVIOI 1.40	Carl HV Carl HV Carl HV Carl Thu Carl HV Carl	AM Peak Hour 7.45 AM to 8.45 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
avidson Drive	Davidson Drive M. Right Carl HV Carl HV Co. 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 0 7% #DIV/01 7% #DIV/01 1.34 #DIV/01	Right Left HV Car HV Car HV Car HV Car	63
Project No. 3483.01 Location Davenport Drive and Davidson Drive Date Tuesday May 17th, 2 Weather Clear Surveyor MIO	Street Eastboun	Total	Street Car HV Car HV	© € 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

		7 ♣
Pedestrians Pedestrians	Pedestians Pedestians	9.15 PM to 4:15 PM ← 42 63 ➡
Car Hv	#DIVIOI #DIVIOI #DIVIOI 0.73	0
Right Car HV Car	#DIVIOI	AM Peak Hour 7:45 AM to 8:45 AM
Davenport Dive and Davenport Place Thursday May 19th.; Clear Mill	1.00 0.25 1.00 0.25 Davenport Drive HV Car HV Car HV Car 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Project No. 10 10 10 10 10 10 10 1	Street	© ⇔

						0 #	
	South Approach E/W 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	South	<	13			
	trians North Approach 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 trians North	Approach O O O O O O O O O O O O O	0		0 1	
	Pedest West West Approach 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedes	₹	10	our 4:15 PM	↓	
	East Approach N/S	0 East	N/S N/S O	0	PM Peak Hour 3:15 PM to 4:15 PM		
	Hourly Totals 186 207 203 203 207	urly	180 209 209 227 227 227 227 228 228 334 334 334	31 % 83	ш ()	000	
	Total 44 44 52 49 45 52 27 27 375	207 7% 0.8 0.8 1.81 Ho	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23	tt ← 2	Orke Character	⇔ 8
	Right To 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0.75 2.11	Right HV (Sight	15 0% 3.75	0 106 \$	15 91 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	121 13
	Southbound Thru Car H H H 5 5 0 0 5 1 1 7 0 0 7 0 0 7 0 0 8 2 2 9 0 0 7 0 0 55 4 69 55	27 15% 0.68 2.19	Control of the contro	91 2% 0.67		30 0 1	
	Source So	0000	100 100 100 100 100 100 100 100 100 100	0 IV/0!		94	
	Car Car	(dale Dr	Car	##		↑ 4	
	Car HV Car HV 0 0 0	0 #DIV/01 #DIV/01 #DIV/01	Right HV 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0/\IG#		10 ♣	
	Thround Thround Thro T	98 2% 0.84 1.76	7 Thurston 1 Thurston	53 4% 0.88		_ =	
	North T		→ 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++		o	
	Car Left 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 35% 0.42 2.00	Car Left	31 16% 0.70	our 8:15 AM	0 1	,
	Right Car HV	0 #DIV/0! #DIV/0!	Right HV	0 #DIV/0I #DIV/0I	AM Peak Hour 7:15 AM to 8:15 AM	₽ O	
	Westbound Thru Car HV	#DIV/0! #DIV/0! #DIV/0!	Car HV HV O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 #DIV/0!		000	<u> </u>
	→ → O		3→→O		129	27 0 % % % % % % % % % % % % % % % % % %	⊕ 11
	Car Left	#DIV/0 #DIV/0 #DIV/0	Car	0)/\\IG#	0 38	9 ⊕avenp ⊕avenp	4 9 ↑
Drive	Pavent Right	22 5% 1.10 1.45 Daven	Right HV (1978) 1	30 7% 1.25		31 22 22	
Clarkdale	Eastbound Thru Car HV C 0 0 0	10 io pun	Car TH HV	10//01		f 29	
rive and y 17th, 2	Eastt Th	#DIV/ #DIV/ #DIV/ #BIV/ #BIV/	Car Table	NO##		t ≅	
3483.01 Desempert Drive and Clarkdale D Tuesday May 17th, 2 Clear MIO	Left T T Car HV Car 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 0% 1.29 1.71	Left 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0% 0.92		← ⇔	
	00 AM 15 AM 30 AM 45 AM 30 AM 30 AM 45 AM	Total	33 PM 34 S PM 35 PM 36 PM 37 PM 38 PM 39 PM 39 PM 30 PM 30 PM 31 PM 31 PM 32 PM 33 PM 34 PM 35 PM 36 PM 37 PM 38 PM	Total			
Project No. Location Date Weather Surveyor	Street Direction Movement start time 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Peak Hour % HV PHF Z Hr Factor Street Direction	Novement	Peak Hour % HV PHF			

3483.01 - Davidson Creek SchoolDate: Thursday, May 19th Counter: JD, AF

Time		Zone 1			Zone 2			Zone 3			Zone 4			Total	
	Veh	жосс	Stalls Available	Veh	жосс	Stalls Available	Veh	ээ0%	Stalls Available	Veh	200%	Stalls Available	Veh	200%	Stalls Available
7:00 AM	0	%0	7	2	%9	31	2	%8	24	9	120%	0	10	74%	61
7:15 AM	0	%0	7	2	%9	31	2	%8	24	9	120%	0	10	14%	61
7:30 AM	0	%0	7	2	%9	31	2	%8	24	5	100%	0	6	13%	62
7:45 AM	0	%0	7	2	%9	31	1	%†	25	2	%001	0	8	%11%	£9
8:00 AM	0	%0	7	2	%9	31	2	%8	24	2	%001	0	6	13%	62
8:15 AM	0	%0	7	2	%9	31	1	%†	25	5	100%	0	8	11%	£9
8:30 AM	0	%0	7	2	%9	31	2	%8	24	4	%08	1	8	%11%	89
8:45 AM	0	%0	7	1	3%	32	2	%8	24	3	%09	2	9	%8	9
2:30 PM	0	%0	7	2	%9	31	3	12%	23	1	%07	7	9	%8	<u> </u>
2:45 PM	0	%0	7	2	%9	31	2	%8	24	1	70%	4	5	%/	99
3:00 PM	0	%0	7	2	%9	31	2	%8	24	1	%07	7	2	%L	99
3:15 PM	0	%0	7	2	%9	31	2	%8	24	1	70%	4	5	%/	99
3:30 PM	1	14%	9	2	%9	31	2	%8	24	1	%07	7	9	%8	<u> </u>
3:45 PM	1	14%	9	2	%9	31	3	12%	23	1	%07	4	7	70%	64
4:00 PM	1	14%	9	2	%9	31	3	12%	23	2	%07	8	8	%11%	£9
4:15 PM	1	14%	9	2	%9	31	4	%21	22	1	%07	7	8	%11%	£9
4:30 PM	1	14%	9	2	%9	31	4	%21	22	1	%07	7	8	11%	£9
4:45 PM	0	%0	7	2	%9	31	4	%21	22	1	%07	7	7	70%	64
5:00 PM	0	%0	7	1	3%	32	4	15%	22	1	20%	4	6	8%	65
5:15 PM	1	14%	9	3	%6	30	4	15%	22	1	20%	4	9	13%	62
5:30 PM	0	%0	7	2	%9	31	4	15%	22	1	20%	4	7	10%	64
5:45 PM	0	%0	7	2	%9	31	4	15%	22	1	70%	4	7	10%	64
Мах	1	14%		3	%6		4	15%		9	120%		10	14%	

APPENDIX B

Synchro 9 Printouts

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ		7	ሻ		7
Traffic Vol, veh/h	29	157	11	46	585	7	62	0	61	42	0	123
Future Vol, veh/h	29	157	11	46	585	7	62	0	61	42	0	123
Conflicting Peds, #/hr	2	0	2	2	0	2	2	0	2	2	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	-	-	Yield	-	-	Yield
Storage Length	1200	-	1150	1200	-	1150	0	-	300	0	-	450
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	80	69	100	100	100	91	94	76	53	94	88
Heavy Vehicles, %	7	3	0	15	3	29	3	0	5	5	0	2
Mvmt Flow	32	196	16	46	585	7	68	0	80	79	0	140
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	587	0	0	198	0	0	649	-	102	843	-	297
Stage 1	-	-	-	-	-	-	262	-	-	679	-	-
Stage 2	-	-	-	-	-	-	387	-	-	164	-	-
Critical Hdwy	4.24	-	-	4.4	-	-	7.56	-	7	7.6	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	-	-	6.6	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.56	-	-	6.6	-	-
Follow-up Hdwy	2.27	-	-	2.35	-	-	3.53	-	3.35	3.55	-	3.32
Pot Cap-1 Maneuver	950	-	-	1282	-	-	353	0	924	252	0	699
Stage 1	-	-	-	-	-	-	717	0	-	401	0	-
Stage 2	-	-	-	-	-	-	605	0	-	813	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	948	-	-	1280	-	-	267	-	921	217	-	697
Mov Cap-2 Maneuver	-	-	-	-	-	-	267	-	-	217	-	-
Stage 1	-	-	-	-	-	-	692	-	-	387	-	-
Stage 2	-	-	-	-	-	-	466	-	-	716	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.2			0.6			15.6			18.5		
HCM LOS							С			С		
Minor Lane/Major Mvmt	NBLn1 l	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	267	921	948		1280	-	- 217	697				
HCM Lane V/C Ratio		0.087			0.036	-	- 0.365					
HCM Control Delay (s)	23	9.3	8.9		7.9	-	- 30.8	11.5				
HCM Lane LOS	С	Α	Α		Α	-	- D	В				
HCM 95th %tile Q(veh)	1	0.3	0.1		0.1	-	- 1.6	0.7				
, ,												

Intersection												
Int Delay, s/veh	6.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7	*		7	7		7
Traffic Vol., veh/h	12	285	17	14	271	35	117	0	137	123	0	88
Future Vol, veh/h	12	285	17	14	271	35	117	0	137	123	0	88
Conflicting Peds, #/hr	2	0	1	1	0	2	1	0	1	2	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	Yield	_	_	Yield	-	-	Yield	-	-	Yield
Storage Length	1200		1200	1200	_	1200	0	_	900	0		900
Veh in Median Storage, #		0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	_	_	0	_	-	0		-	0	
Peak Hour Factor	100	79	100	88	100	73	98	94	90	93	94	96
Heavy Vehicles, %	0	1	29	14	6	9	3	0	1	0	0	2
Mvmt Flow	12	361	17	16	271	48	119	0	152	132	0	92
Will Flow	12	001	.,	10	271	10	117		102	102		, _
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	273	0	0	362	0	0	555	_	183	511	-	140
Stage 1	-	-	_	-	-	_	386	_	-	305	-	_
Stage 2			_	_	_	_	169	-	-	206	-	_
Critical Hdwy	4.1	-	_	4.38	-	_	7.56	_	6.92	7.5	-	6.94
Critical Hdwy Stg 1	-	-	_	-	_	-	6.56	-	_	6.5	-	_
Critical Hdwy Stg 2	-	-	_	-	-	_	6.56	_	-	6.5	-	-
Follow-up Hdwy	2.2	-	_	2.34	_	-	3.53	-	3.31	3.5	-	3.32
Pot Cap-1 Maneuver	1302	-	-	1111	-	-	412	0	831	450	0	882
Stage 1	-	-	_	-	_	-	606	0	-	685	0	-
Stage 2	-	-	_	-	-	_	813	0	-	782	0	-
Platoon blocked, %			_		_	_						
Mov Cap-1 Maneuver	1300	-	_	1109	-	_	361	_	829	360	-	879
Mov Cap-2 Maneuver	-		_	-	_	_	361	-	-	360	-	-
Stage 1	-	-	_	-	-	_	600	_	-	678	-	-
Stage 2	-	-	_	-	_	-	716	-	-	631	-	-
g												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.4			14.5			16.2		
HCM LOS							В			С		
Minor Lane/Major Mvmt	NBLn1 I		EBL	EBT EBR	WBL	WBT	WBR SBLn1					
Capacity (veh/h)	361	829	1300		1109	-	- 360	879				
HCM Lane V/C Ratio	0.331	0.184	0.009		0.014	-	- 0.367	0.104				
HCM Control Delay (s)	19.8	10.3	7.8		8.3	-	- 20.7	9.6				
HCM Lane LOS	С	В	Α		Α	-	- C	Α				
HCM 95th %tile Q(veh)	1.4	0.7	0		0	-	- 1.6	0.3				

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	25.1	1102	4	1	05.1
Traffic Vol, veh/h	24	29	100	39	16	47
Future Vol, veh/h	24	29	100	39	16	47
Conflicting Peds, #/hr	1	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-		-	None
Storage Length	0	-	_	-	<u>.</u>	-
Veh in Median Storage, #		<u> </u>	-	0	0	_
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	69	57	67	69
Heavy Vehicles, %	0	7	7	37	6	4
Mvmt Flow	24	29	145	68	24	68
IVIVIIIL F IUW	24	29	145	00	24	00
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	418	59	93	0	-	0
Stage 1	59	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Critical Hdwy	6.4	6.27	4.17	-	<u>-</u>	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.363	2.263	-	-	-
Pot Cap-1 Maneuver	595	993	1471	-	<u>.</u>	-
Stage 1	969	-	-	-	-	-
Stage 2	711	-	-	-	_	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	533	992	1471	-	_	-
Mov Cap-2 Maneuver	533	-	-	-	-	_
Stage 1	968	-	-	-		-
Stage 2	638	-	-	-		_
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		5.2		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1471	- 714				
HCM Lane V/C Ratio	0.099	- 0.074				
HCM Control Delay (s)	7.7	0 10.4				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0.3	- 0.2				
1101V1 70111 701110 Q(VOII)	0.0	0.2				

Intersection							
Int Delay, s/veh	2.9						
Movement	EB	T EBR		WBL	WBT	NBL	NBR
Lane Configurations) }		VVDL	4	Y	NDIX
Traffic Vol, veh/h		6 8		1	82	25	6
Future Vol, veh/h		6 8		1	82	25	6
Conflicting Peds, #/hr		0 3		4	02	0	4
Sign Control	Fre			Free	Free	Stop	Stop
RT Channelized	FIE	- None		-	None	3ιυμ	None
Storage Length		- NONE		-	None	0	None
Veh in Median Storage, #	4	0 -		-	0	0	-
Grade, %		0 -		-	0	0	-
Peak Hour Factor	10			25	71	48	75
Heavy Vehicles, %		4 0		100	12	46	0
Mymt Flow		6 8		4	115	52	8
IVIVITIL T IOW		0 0		4	113	32	0
Major/Minor	Major			Major2		Minor1	
Conflicting Flow All		0 0		38	0	157	38
Stage 1				-	-	34	-
Stage 2				-	-	123	-
Critical Hdwy				5.1	-	6.44	6.2
Critical Hdwy Stg 1				-	-	5.44	-
Critical Hdwy Stg 2				-	-	5.44	-
Follow-up Hdwy				3.1	-	3.536	3.3
Pot Cap-1 Maneuver				1119	-	830	1040
Stage 1				-	-	983	-
Stage 2				-	-	898	-
Platoon blocked, %					-		
Mov Cap-1 Maneuver				1115	-	824	1033
Mov Cap-2 Maneuver				-	-	824	-
Stage 1				-	-	980	-
Stage 2				-	-	894	-
Approach	Е	В		WB		NB	
HCM Control Delay, s		0		0.3		9.6	
HCM LOS						A	
Minor Lane/Major Mvmt	NBLn1 EB	T EBR	WBL	WBT			
Capacity (veh/h)	847		4445	-			
HCM Lane V/C Ratio	0.071		0.004	-			
HCM Control Delay (s)	9.6		0.0	0			
HCM Lane LOS	9.0 A			A			
HCM 95th %tile Q(veh)	0.2		^				
ucivi April write (Acu)	U.Z		U	-			

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	1≽	
Traffic Vol, veh/h	31	22	20	98	27	9
Future Vol, veh/h	31	22	20	98	27	9
Conflicting Peds, #/hr	1	2	2	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	42	84	68	75
Heavy Vehicles, %	0	5	35	2	15	0
Mvmt Flow	31	22	48	117	40	12
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	261	50	54	0	IVIUJUIZ	0
Stage 1	48	-	-	-	<u>-</u>	U
Stage 2	213	-	-	-	-	
Critical Hdwy	6.4	6.25	4.45	-	<u>-</u>	-
Critical Hdwy Stg 1	5.4	0.23	4.43	-	•	
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.345	2.515	-	-	
Pot Cap-1 Maneuver	732	1010	1364		<u>-</u>	-
Stage 1	980	1010	1304	-	-	
Stage 2	827	<u>-</u>	-	-	<u>-</u>	-
Platoon blocked, %	027	-	-	_	•	- -
Mov Cap-1 Maneuver	702	1007	1362	-	<u>-</u>	-
Mov Cap-1 Maneuver	702	1007	1302	-	-	
Stage 1	978	-	-	-	<u>-</u>	-
Stage 2	794		-	_	-	
Staye 2	174	<u>-</u>	-	_	<u>-</u>	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.8		2.2		0	
HCM LOS	A					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1362	- 803				
HCM Lane V/C Ratio	0.035	- 0.066				
HCM Control Delay (s)	7.7	0 9.8				
HCM Lane LOS	Α.,	A A				
HCM 95th %tile Q(veh)	0.1	- 0.2				
	0, 1	0.2				

	₩	×	Ž	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ř	† †	7	J.	† †	7	*	f)		ň	f)	
Traffic Volume (vph)	33	395	70	113	612	44	36	9	66	148	92	51
Future Volume (vph)	33	395	70	113	612	44	36	9	66	148	92	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	130.0		90.0	115.0		115.0	60.0		0.0	0.0		120.0
Storage Lanes	1		1	1		1	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.96	0.99		0.98	0.99	0.98		0.99	0.99	
Frt			0.850			0.850		0.883			0.955	
Flt Protected												
Satd. Flow (prot)	1845	3654	1468	1845	3725	1538	1667	1626	0	1827	1714	0
Flt Permitted	0.433			0.441			0.446			0.697		
Satd. Flow (perm)	798	3654	1415	808	3725	1504	738	1626	0	1264	1714	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121			44		72			15	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		405.8			388.5			372.2			450.4	
Travel Time (s)		24.3			23.3			26.8			32.4	
Confl. Peds. (#/hr)	1	21.0	7	7	20.0	1	8	20.0	7	7	02.1	8
Peak Hour Factor	0.92	0.77	0.58	1.00	1.00	1.00	0.75	0.45	0.92	0.76	0.66	0.85
Heavy Vehicles (%)	3%	4%	10%	3%	2%	5%	14%	0%	2%	4%	4%	8%
Adj. Flow (vph)	36	513	121	113	612	44	48	20	72	195	139	60
Shared Lane Traffic (%)	00	0.0		110	0.2				,_	170	107	
Lane Group Flow (vph)	36	513	121	113	612	44	48	92	0	195	199	0
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	1 01111	6	1 01111	5	2	1 01111	1 01111	4		1 01111	8	
Permitted Phases	6		6	2	_	2	4	•		8		
Detector Phase	6	6	6	5	2	2	4	4		8	8	
Switch Phase	, ,				_	_	•	•				
Minimum Initial (s)	20.0	20.0	20.0	7.0	20.0	20.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	36.0	36.0	36.0	12.0	36.0	36.0	41.0	41.0		41.0	41.0	
Total Split (s)	79.0	79.0	79.0	20.0	99.0	99.0	41.0	41.0		41.0	41.0	
Total Split (%)	56.4%	56.4%	56.4%	14.3%	70.7%	70.7%	29.3%	29.3%		29.3%	29.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	0.0	2.0	2.0	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Total Lost Time (s)	6.5	6.5	6.5	4.5	6.5	6.5	6.5	6.5		6.5	6.5	
Lead/Lag	Lag	Lag	Lag	Lead	0.5	0.5	0.0	0.5		0.5	0.5	
Lead-Lag Optimize?	Lag	Lag	Lag	LCau								
Recall Mode	C-Max	C-Max	C-Max	Min	C-Max	C-Max	Min	Min		Min	Min	
Act Effct Green (s)	88.8	88.8	88.8	103.0	101.0	101.0	26.0	26.0		26.0	26.0	
Actuated g/C Ratio	0.63	0.63	0.63	0.74	0.72	0.72	0.19	0.19		0.19	0.19	
v/c Ratio	0.03	0.03	0.03	0.74	0.72	0.72	0.17	0.19		0.17	0.60	
	12.7	12.2	2.6	6.8	7.3	2.2	54.6	15.6		81.9	55.0	
Control Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Queue Delay	12.7	12.2	2.6							81.9	55.0	
Total Delay				6.8	7.3	2.2	54.6	15.6				
LOS Approach Dolov	В	10 E	А	А	A	А	D	30 O		F	D	
Approach Delay		10.5			7.0			29.0			68.3	

	•	×	À	\sim	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		В			А			С			Е	
Queue Length 50th (m)	3.8	30.0	0.0	8.4	27.1	0.0	12.3	4.8		55.2	49.5	
Queue Length 95th (m)	10.6	39.4	0.4	17.7	42.2	4.3	19.9	1.1		64.2	48.6	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	505	2316	941	709	2687	1097	181	454		311	433	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.07	0.22	0.13	0.16	0.23	0.04	0.27	0.20		0.63	0.46	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 64 (46%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 22.0 Intersection Capacity Utilization 84.9% Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

Splits and Phases: 20: Cranberry Drive/Davidson Drive & Clover Bar Road

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7	*		7	ሻ		7
Traffic Vol. veh/h	88	386	52	39	289	24	24	0	53	7	0	66
Future Vol, veh/h	88	386	52	39	289	24	24	0	53	7	0	66
Conflicting Peds, #/hr	28	0	12	3	0	19	12	0	3	19	0	28
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	<u>.</u>	<u>'</u> -	Yield	<u>.</u>	-	Yield
Storage Length	1200	-	1150	1200	_	1150	0	-	300	0	_	450
Veh in Median Storage, #		0	-	_	0	_	_	0	-	_	0	_
Grade, %	_	0	-	-	0	-	-	0	_	-	0	
Peak Hour Factor	100	94	72	100	98	100	100	95	100	100	95	53
Heavy Vehicles, %	5	3	0	8	3	8	0	0	8	14	0	3
Mvmt Flow	88	411	72	39	295	24	24	0	53	7	0	125
WWW. Flow	00		, _	0,	270		2.	· ·	00	•	J	120
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	323	0	0	423	0	0	852	_	236	801	-	203
Stage 1	-	_	-	-	-	_	599	-	-	401	-	_
Stage 2	-	_	_	-	_	-	253	-	_	400	_	-
Critical Hdwy	4.2	_	_	4.26	_	-	7.5	_	7.06	7.78	-	6.96
Critical Hdwy Stg 1	-	_	_	-	_	_	6.5	-	-	6.78	_	-
Critical Hdwy Stg 2	-	_	_	_	_	-	6.5	_	_	6.78	-	_
Follow-up Hdwy	2.25	_	_	2.28	_	_	3.5	-	3.38	3.64	_	3.33
Pot Cap-1 Maneuver	1212	_	_	1091	_	_	256	0	748	256	0	801
Stage 1	-	_	_	-	_	_	460	0	-	565	0	-
Stage 2	_	_	_	_	_	_	735	0	_	566	0	_
Platoon blocked, %		_	_		_	_		Ū		333		
Mov Cap-1 Maneuver	1183	_	_	1073	_	_	190	_	728	209	_	763
Mov Cap-2 Maneuver	-	_	_	-	_	_	190	_	-	209	_	-
Stage 1	_	_	_	_	_	_	421	_	_	511	_	_
Stage 2	_	_	_	_	_	_	579	_	_	478	_	_
Stage 2							377			470		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.3			0.9			15.4			11.2		
HCM LOS							С			В		
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	190	728	1183		1073	-	- 209	763				
HCM Lane V/C Ratio		0.073			0.036	-	- 0.033					
HCM Control Delay (s)	26.7	10.3	8.3		8.5	-	- 22.8	10.6				
HCM Lane LOS	D	В	А		А	-	- C	В				
HCM 95th %tile Q(veh)	0.4	0.2	0.2		0.1	-	- 0.1	0.6				
	J. 1				J			5.5				

Intersection												
Int Delay, s/veh	4.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7	ሻ		7	ሻ		7
Traffic Vol, veh/h	89	229	102	51	281	68	60	0	34	33	0	50
Future Vol, veh/h	89	229	102	51	281	68	60	0	34	33	0	50
Conflicting Peds, #/hr	5	0	5	0	0	0	5	0	0	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	-	·-	Yield	-	-	Yield
Storage Length	1200	-	1200	1200	-	1200	0	-	900	0	-	900
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	72	100	98	98	77	88	87	71	100	87	78
Heavy Vehicles, %	0	7	1	0	2	0	7	0	12	12	0	4
Mvmt Flow	92	318	102	52	287	88	68	0	48	33	0	64
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	292	0	0	323	0	0	759	-	164	739	-	153
Stage 1	-	-	-	-	-	-	507	-	-	396	-	-
Stage 2	-	-	-	-	-	-	252	-	-	343	-	-
Critical Hdwy	4.1	-	-	4.1	-	-	7.64	-	7.14	7.74	-	6.98
Critical Hdwy Stg 1	-	-	-	-	-	-	6.64	-	-	6.74	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.64	-	-	6.74	-	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.57	-	3.42	3.62	-	3.34
Pot Cap-1 Maneuver	1281	-	-	1248	-	-	287	0	821	288	0	859
Stage 1	-	-	-	-	-	-	504	0	-	574	0	-
Stage 2	-	-	-	-	-	-	716	0	-	619	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1276	-	-	1248	-	-	241	-	818	247	-	852
Mov Cap-2 Maneuver	-	-	-	-	-	-	241	-	-	247	-	-
Stage 1	-	-	-	-	-	-	466	-	-	530	-	-
Stage 2	-	-	-	-	-	-	632	-	-	541	-	-
ů.												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.4			1			19.1			13.7		
HCM LOS							С			В		
Minor Lane/Major Mvmt	NBLn1 l	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	241	818	1276		1248	-	- 247	852				
HCM Lane V/C Ratio	0.283	0.059	0.072		0.042	-	- 0.134	0.075				
HCM Control Delay (s)	25.7	9.7	8		0	-	- 21.8	9.6				
HCM Lane LOS	D	Α	Α		А	-	- C	Α				
HCM 95th %tile Q(veh)	1.1	0.2	0.2		0.1	-	- 0.5	0.2				

Intersection						
Int Delay, s/veh	6.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBF
Lane Configurations	W			4	4	
Traffic Vol, veh/h	57	72	36	28	37	32
Future Vol, veh/h	57	72	36	28	37	32
Conflicting Peds, #/hr	2	4	4	0	0	2
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, F		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	82	69	100	77	100
Heavy Vehicles, %	0	6	14	7	3	6
Mvmt Flow	60	88	52	28	48	32
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	202	72	84	0	-	0
Stage 1	68	-	-	-	_	-
Stage 2	134	-	_			_
Critical Hdwy	6.4	6.26	4.24	-	_	-
Critical Hdwy Stg 1	5.4			-		_
Critical Hdwy Stg 2	5.4	-	-	-		-
Follow-up Hdwy	3.5	3.354	2.326	-	-	_
Pot Cap-1 Maneuver	791	979	1440	-	_	-
Stage 1	960	-	-	-	-	_
Stage 2	897	_	-	-	_	_
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	757	972	1435	-	-	-
Mov Cap-2 Maneuver	757	-	-	-	-	
Stage 1	957	_		-	-	-
Stage 2	861	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10		4.9		0	
HCM LOS	В		1 .7		U	
TOW LOO	D					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1435	- 872				
HCM Lane V/C Ratio	0.036	- 0.17				
HCM Control Delay (s)	7.6	0.17				
HCM Lane LOS	7.6 A	A B				
HCM 95th %tile Q(veh)	0.1	0 /				
HOW YOU WILL Q(Ven)	U. I	- 0.6				

Intersection								
Int Delay, s/veh	1							
)T	EDD	,	MDI	WDT	MDI	NDD
Movement	El		EBR	V	<u>NBL</u>	WBT	NBL_	NBR
Lane Configurations		}	47		_	4	¥	
Traffic Vol, veh/h		60	17		7	35	5	3
Future Vol, veh/h		60	17		7	35	5	3
Conflicting Peds, #/hr	_	0	18	_	18	0	18	18
Sign Control	Fr		Free	ı	Free	Free	Stop	Stop
RT Channelized		- 1	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #		0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		71	61		100	100	63	86
Heavy Vehicles, %		7	6		0	14	20	67
Mvmt Flow		85	28		7	35	8	3
Major/Minor	Majo	ır1		Ma	ajor2		Minor1	
Conflicting Flow All	Majo	0	0	IVIC	130	0	183	134
Stage 1		-	-		-	-	116	134
Stage 2		-	-		-	-	67	-
Critical Hdwy		-	-		4.1	-	6.6	6.87
Critical Hdwy Stg 1		-	-		4.1	-	5.6	0.07
		-	-		-		5.6	-
Critical Hdwy Stg 2		-	-		2.2	-	3.68	3.903
Follow-up Hdwy		-		1		-		
Pot Cap-1 Maneuver		-	-		468	-	767	767
Stage 1		-	-		-	-	866	-
Stage 2		-	-		-	-	912	-
Platoon blocked, %		-	-		111	-	7.40	7/1
Mov Cap-1 Maneuver		-	-		446	-	740	744
Mov Cap-2 Maneuver		-	-		-	-	740	-
Stage 1		-	-		-	-	853	-
Stage 2		-	-		-	-	894	-
Approach		ЕΒ			WB		NB	
HCM Control Delay, s		0			1.3		9.9	
HCM LOS							A	
							, , , , , , , , , , , , , , , , , , ,	
Minor Lane/Major Mvmt	NBLn1 EI	QΤ	EBR	WBL V	WBT			
Capacity (veh/h)	741	-		1446	-			
HCM Cantral Dalay (a)	0.015	-		0.005	-			
HCM Control Delay (s)	9.9	-	-	7.5	0			
HCM Lane LOS	A	-	-	A	Α			
HCM 95th %tile Q(veh)	0	-	-	0	-			

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	1≽	
Traffic Vol, veh/h	11	30	31	53	91	15
Future Vol, veh/h	11	30	31	53	91	15
Conflicting Peds, #/hr	10	23	23	0	0	10
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	100	70	88	67	100
Heavy Vehicles, %	0	7	16	4	2	0
Mvmt Flow	12	30	44	60	136	15
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	325	189	174	0	ividjulz	0
	166				<u>. </u>	U
Stage 1	159	-	-	-	-	-
Stage 2 Critical Hdwy	7.1	6.27	4.26		<u>. </u>	-
	6.1	0.27	4.20	-	-	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2	6.1	-	-	-	<u>. </u>	-
Follow-up Hdwy	3.5	3.363	2.344	-	•	-
Pot Cap-1 Maneuver	632	3.303	1322		<u>-</u>	-
		840	1322	-	•	
Stage 1	841			-	-	-
Stage 2	848	-	-	-	-	-
Platoon blocked, %	F00	000	100/	-	-	-
Mov Cap-1 Maneuver	598	808	1296	-	-	-
Mov Cap-2 Maneuver	598	-	-	-	-	-
Stage 1	796	-	-	-	-	-
Stage 2	811	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.2		3.3		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1296	- 734				
HCM Lane V/C Ratio	0.034	- 0.057				
HCM Control Delay (s)	7.9	0.037				
HCM Lane LOS	7. 9	A B				
HCM 95th %tile Q(veh)	0.1	0.0				
HOW YOU WILLE (Vell)	0.1	- 0.2				

	7	*	À	*	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	f.		ሻ	f)	
Traffic Volume (vph)	107	741	37	47	580	146	36	31	57	72	22	60
Future Volume (vph)	107	741	37	47	580	146	36	31	57	72	22	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	130.0		90.0	115.0		115.0	60.0		0.0	0.0		120.0
Storage Lanes	1		1	1		1	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		-
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.97	1.00		0.98	0.99	0.96		0.96	0.98	
Frt			0.850			0.850	0	0.909		0.70	0.893	
Flt Protected			0.000			0.000		0.707			0.070	
Satd. Flow (prot)	1810	3762	1538	1863	3725	1615	1667	1604	0	1845	1569	0
Flt Permitted	0.446	0,02	1000	0.317	0720	1010	0.702	1001	· ·	0.421	1007	J
Satd. Flow (perm)	806	3762	1488	589	3725	1576	1160	1604	0	746	1569	0
Right Turn on Red	000	0702	Yes	007	0720	Yes	1100	1001	Yes	7 10	1007	Yes
Satd. Flow (RTOR)			52			146		58	103		60	103
Link Speed (k/h)		60	52		60	140		50			50	
Link Distance (m)		405.8			388.5			372.2			450.4	
Travel Time (s)		24.3			23.3			26.8			32.4	
Confl. Peds. (#/hr)	2	24.5	6	6	20.0	2	9	20.0	46	46	JZ.7	9
Peak Hour Factor	0.76	0.81	0.71	0.98	1.00	1.00	0.45	0.48	0.57	1.00	0.92	1.00
Heavy Vehicles (%)	5%	1%	5%	2%	2%	0%	14%	3%	4%	3%	5%	7%
Adj. Flow (vph)	141	915	52	48	580	146	80	65	100	72	24	60
Shared Lane Traffic (%)	171	713	32	70	300	170	00	03	100	12	27	00
Lane Group Flow (vph)	141	915	52	48	580	146	80	165	0	72	84	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	U	Perm	NA	U
Protected Phases	I CIIII	6	I CIIII	I CIIII	2	I CIIII	I CIIII	4		I CIIII	8	
Permitted Phases	6	U	6	2		2	4	7		8	U	
Detector Phase	6	6	6	2	2	2	4	4		8	8	
Switch Phase	U	U	U				4	7		U	U	
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	36.0	36.0	36.0	36.0	36.0	36.0	41.0	41.0		41.0	41.0	
Total Split (s)	89.0	89.0	89.0	89.0	89.0	89.0	41.0	41.0		41.0	41.0	
Total Split (%)	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	31.5%	31.5%		31.5%	31.5%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5	31.576		3.5	31.576	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
• • • • • • • • • • • • • • • • • • • •	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	
Total Lost Time (s)	0.0	0.5	0.5	0.3	0.3	0.5	0.3	0.3		0.5	0.3	
Lead/Lag Optimize?												
Lead-Lag Optimize?	C May	C-Max	C May	C-Max	C May	C May	Min	Min		Min	Min	
Recall Mode	C-Max		C-Max		C-Max	C-Max	Min	Min		Min		
Act Effet Green (s)	102.5	102.5	102.5	102.5	102.5	102.5	14.5	14.5		14.5	14.5	
Actuated g/C Ratio	0.79	0.79	0.79	0.79	0.79	0.79	0.11	0.11		0.11	0.11	
v/c Ratio	0.22	0.31	0.04	0.10	0.20	0.11	0.62	0.72		0.87	0.37	
Control Delay	5.1	4.5	1.2	4.5	3.9	0.9	74.6	52.7		124.2	23.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.1	4.5	1.2	4.5	3.9	0.9	74.6	52.7		124.2	23.4	
LOS	Α	Α	А	Α	A	Α	Е	D		F	C	
Approach Delay		4.4			3.4			59.9			69.9	

	₩.	\mathbf{x}	Ž	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		А			Α			Е			Е	
Queue Length 50th (m)	7.9	28.1	0.0	2.4	15.9	0.0	21.1	28.3		19.5	6.0	
Queue Length 95th (m)	15.0	40.1	1.9	7.3	27.4	5.3	17.3	17.7		#39.3	21.1	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	635	2966	1184	464	2937	1273	307	468		197	460	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.22	0.31	0.04	0.10	0.20	0.11	0.26	0.35		0.37	0.18	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 104 (80%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 14.5
Intersection Capacity Utilization 82.7%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection												
Int Delay, s/veh	8.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ		7	ሻ		7
Traffic Vol, veh/h	29	307	11	46	880	7	62	0	61	42	0	123
Future Vol, veh/h	29	307	11	46	880	7	62	0	61	42	0	123
Conflicting Peds, #/hr	2	0	2	2	0	2	2	0	2	2	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	-	-	Yield	-	-	Yield
Storage Length	1200	-	1150	1200	-	1150	0	-	300	0	-	450
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	80	69	100	100	100	91	94	76	53	94	88
Heavy Vehicles, %	7	3	0	15	3	29	3	0	5	5	0	2
Mvmt Flow	32	384	16	46	880	7	68	0	80	79	0	140
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	882	0	0	386	0	0	983	-	196	1232	-	444
Stage 1	-	-	-	-	-	-	449	-	-	974	-	-
Stage 2	-	-	-	-	-	-	534	-	-	258	-	-
Critical Hdwy	4.24	-	-	4.4	-	-	7.56	-	7	7.6	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	-	-	6.6	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.56	-	-	6.6	-	-
Follow-up Hdwy	2.27	-	-	2.35	-	-	3.53	-	3.35	3.55	-	3.32
Pot Cap-1 Maneuver	732	-	-	1081	-	-	202	0	803	130	0	561
Stage 1	-	-	-	-	-	-	556	0	-	265	0	-
Stage 2	-	-	-	-	-	-	495	0	-	716	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	731	-	-	1079	-	-	141	-	800	109	-	559
Mov Cap-2 Maneuver	-	-	-	-	-	-	141	-	-	109	-	-
Stage 1	-	-	-	-	-	-	531	-	-	253	-	-
Stage 2	-	-	-	-	-	-	355	-	-	615	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.4			29.5			43.9		
HCM LOS							D			E		
Minor Lane/Major Mvmt	NBLn1 N	NBL _{n2}	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	141	800	731		1079	-	- 109	559				
HCM Lane V/C Ratio	0.483	0.1	0.044		0.043	-	- 0.727	0.25				
HCM Control Delay (s)	52.4	10	10.1		8.5	-	- 97.3	13.6				
HCM Lane LOS	F	В	В		Α	-	- F	В				
HCM 95th %tile Q(veh)	2.2	0.3	0.1		0.1	-	- 3.9	1				
-												

Intersection												
Int Delay, s/veh 65	.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ř		7	ሻ		7
Traffic Vol, veh/h	115	392	17	14	327	170	117	0	137	295	0	208
Future Vol, veh/h	115	392	17	14	327	170	117	0	137	295	0	208
Conflicting Peds, #/hr	2	0	1	1	0	2	1	0	1	2	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	-	-	Yield	· -	-	Yield
Storage Length	1200	-	1200	1200	-	1200	0	-	900	0	-	900
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	_
Peak Hour Factor	100	79	100	88	100	73	98	94	90	93	94	96
Heavy Vehicles, %	0	1	29	14	6	9	3	0	1	0	0	2
Mvmt Flow	115	496	17	16	327	233	119	0	152	317	0	217
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	329	0	0	497	0	0	924	-	251	841	-	168
Stage 1	-	-	-	-	-	-	727	-	-	361	-	-
Stage 2	-	-	-	-	-	-	197	-	-	480	-	-
Critical Hdwy	4.1	-	-	4.38	-	-	7.56	-	6.92	7.5	-	6.94
Critical Hdwy Stg 1	_	-	-	-	_	_	6.56	_	_	6.5	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.56	_	-	6.5	-	_
Follow-up Hdwy	2.2	-	-	2.34	_	_	3.53	_	3.31	3.5	-	3.32
Pot Cap-1 Maneuver	1242	_	_	983	_	_	223	0	752	~ 261	0	847
Stage 1	-	_	_	-	_	_	379	0	-	636	0	-
Stage 2	_	-	_	-	_	_	783	0	_	541	0	_
Platoon blocked, %		_	_		_	_	700	Ū		011		
Mov Cap-1 Maneuver	1240	_	-	981	_	_	152	_	750	~ 190	-	844
Mov Cap-2 Maneuver	12 10	_	_	701	_	_	152	_	700	~ 190	_	-
Stage 1	_	_	_	-		_	344	_	_	576	_	
Stage 2	_	_	_	_	_	_	572	_	_	391	_	
Stage 2							372			371		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.5			0.2			43			222.2		
HCM LOS	1.0			0.2			E			F		
TIOM EGG										•		
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	152	750	1240		981	-	- 190	844				
HCM Lane V/C Ratio		0.203			0.016	_	- 1.669					
HCM Control Delay (s)	83.9	11	8.2		8.7	-	-\$ 366.7	10.7				
HCM Lane LOS	65.7 F	В	Α		Α	_	- F	В				
HCM 95th %tile Q(veh)	5	0.8	0.3		0	-	- 21.4	1				
		5.5	3.0									
Notes	, ¢. D	olov, ove	200da 20	000 000	nutotic	o Mot D	ofinad *. All	malar	volume e	in plataan		
~: Volume exceeds capacity	y \$: D	eray exc	ceeds 30	JUS +: COM	putatio	ו ווטנ ט	enneu : All	major	volume i	in platoon		

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	25.1	1102	4	1	05.1
Traffic Vol, veh/h	24	29	100	39	16	47
Future Vol, veh/h	24	29	100	39	16	47
Conflicting Peds, #/hr	1	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-		-	None
Storage Length	0	-	_	-	<u>.</u>	-
Veh in Median Storage, #		<u> </u>	-	0	0	_
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	69	57	67	69
Heavy Vehicles, %	0	7	7	37	6	4
Mvmt Flow	24	29	145	68	24	68
IVIVIIIL F IUW	24	29	145	00	24	00
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	418	59	93	0	-	0
Stage 1	59	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Critical Hdwy	6.4	6.27	4.17	-	<u>-</u>	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.363	2.263	-	-	-
Pot Cap-1 Maneuver	595	993	1471	-		-
Stage 1	969	-	-	-	-	-
Stage 2	711	-	-	-	_	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	533	992	1471	-	_	-
Mov Cap-2 Maneuver	533	-	-	-	-	_
Stage 1	968	-	-	-		-
Stage 2	638	-	-	-		_
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		5.2		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1471	- 714				
HCM Lane V/C Ratio	0.099	- 0.074				
HCM Control Delay (s)	7.7	0 10.4				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0.3	- 0.2				
1101V1 70111 701110 Q(VOII)	0.0	0.2				

Intersection							
Int Delay, s/veh	2.9						
Movement	EB ⁻	T EBR		WBL	WBT	NBL	NBR
Lane Configurations	1			VVDL	₩ <u>Ы</u>	Y	NDIX
Traffic Vol, veh/h	20			1	82	T 25	6
Future Vol, veh/h	20			1	82	25	6
Conflicting Peds, #/hr) 3		4	02	0	4
Sign Control	Free			Free	Free	Stop	Stop
RT Channelized		- None		-	None	310p	None
Storage Length		- None		-	None	0	None
Veh in Median Storage, #	+ (-) -		-	0	0	-
Grade, %) -) -		-	0	0	•
Peak Hour Factor	100			25	71	48	75
Heavy Vehicles, %	100			100	12	48	0
Mvmt Flow	20			4	115	52	8
IVIVITIL FIOW	20) 0		4	110	52	0
Major/Minor	Major [*]			Major2		Minor1	
Conflicting Flow All	(0		38	0	157	38
Stage 1				-	-	34	-
Stage 2				-	-	123	-
Critical Hdwy				5.1	-	6.44	6.2
Critical Hdwy Stg 1				-	-	5.44	-
Critical Hdwy Stg 2				-	-	5.44	-
Follow-up Hdwy				3.1	-	3.536	3.3
Pot Cap-1 Maneuver				1119	-	830	1040
Stage 1				-	-	983	-
Stage 2				-	-	898	-
Platoon blocked, %					-		
Mov Cap-1 Maneuver				1115	-	824	1033
Mov Cap-2 Maneuver				-	-	824	-
Stage 1				-	-	980	-
Stage 2				-	-	894	-
Approach	EF	3		WB		NB	
HCM Control Delay, s	()		0.3		9.6	
HCM LOS						A	
Minor Lane/Major Mvmt	NBLn1 EB	Γ EBR	WBL	WBT			
Capacity (veh/h)	0.47		1115	-			
HCM Lane V/C Ratio	0.074		0.004	_			
HCM Control Delay (s)	0.7		0.0	0			
HCM Lane LOS				A			
HCM 95th %tile Q(veh)	0.0		0	-			
110/VI 70(II 70(IIC Q(VCII)	0.2		U				

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	4	
Traffic Vol, veh/h	31	22	20	98	27	9
Future Vol, veh/h	31	22	20	98	27	9
Conflicting Peds, #/hr	1	2	2	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	. 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	42	84	68	75
Heavy Vehicles, %	0	5	35	2	15	0
Mvmt Flow	31	22	48	117	40	12
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	261	50	54	0	- J.	0
Stage 1	48	-	-	-	-	-
Stage 2	213	-	-	-	-	-
Critical Hdwy	6.4	6.25	4.45	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.345	2.515	-	-	-
Pot Cap-1 Maneuver	732	1010	1364	-	-	-
Stage 1	980	-	-	-		-
Stage 2	827	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	702	1007	1362	-	-	-
Mov Cap-2 Maneuver	702	-	-	-	-	-
Stage 1	978	-	-	-	-	-
Stage 2	794	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.8		2.2		0	
HCM LOS	А					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1362	- 803				
HCM Lane V/C Ratio	0.035	- 0.066				
HCM Control Delay (s)	7.7	0 9.8				
HCM Lane LOS	A	A A				
HCM 95th %tile Q(veh)	0.1	- 0.2				
	0.1	0.2				

Self Self Self Self NWI NWI NWI NWI NE		₩	×	Ì	~	×	₹	7	×	~	Ĺ	×	*
Tarlic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)		ች	^	7	ች	44	7	*	ĵ.		ች	ĵ.	
Futher Volume (vph) 33 454 70 113 704 44 36 69 66 148 92 51 106al Flow (vphp) 1900 1000										66	148		51
Indea Indow (ynphy) 1900				70			44	36	9	66		92	
Storage Length (m) 130.0 90.0 115.0 15.0 15.0 10.0	· · · ·						1900	1900	1900				1900
Storage Lanes	, , , ,												
Taper Length (m)													
Lane Utili. Factor		7.5									7.5		
Poet Bike Factor 1.00			*1.00	1.00		*1.00	1.00		1.00	1.00		1.00	1.00
Fit Protected Fit Fit Protected Fit Fit									0.98			0.99	
Fit Protected Satu Flow (prov) 1845 3654 1468 1845 3725 1538 1667 1626 0 1827 1714 0 0 1816 1714 0 0 0 0 0 0 0 0 0												0.955	
Satis Flow (prot) 1845 3654 1468 1845 3725 1538 1667 1626 0 1827 1714 0 0 111 Flit Primitted 0.397 740 0.404 738 1626 0 1264 1714 0 0 1715 1705 1504 1715 1705													
Fit Permitted		1845	3654	1468	1845	3725	1538	1667	1626	0	1827	1714	0
Satid. Flow (perm) 732 3654 1415 741 3725 1504 738 1626 0 1264 1714 0 1716 1716 1717 1706 1505 15													
Page			3654	1415		3725	1504		1626	0		1714	0
Said, Flow (RTOR)													
Link Speed (k/h)									72			15	
Link Distance (m)			60			60							
Travel Time (s)													
Confil. Peds. (#/hr) 1 7 7 1 8 7 7 8 Peak Hour Factor 0.92 0.77 0.58 1.00 1.00 1.00 0.75 0.45 0.92 0.76 0.66 0.85 Heavy Vehicles (%) 3% 4% 10% 3% 2% 5% 14% 0.92 0.76 0.66 0.85 Adj. Flow (vph) 36 590 121 113 704 44 48 20 72 195 139 60 Shared Lane Traffic (%) 1 11 113 704 44 48 92 0 195 199 0 Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 199 0 Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 190 0 0 0 0 0 0													
Peak Hour Factor 0.92 0.77 0.58 1.00 1.00 1.00 0.75 0.45 0.92 0.76 0.66 0.85 Heavy Vehicles (%) 3% 4% 10% 3% 2% 5% 14% 0% 2% 4% 4% 8% Adj. Flow (vph) 36 590 121 113 704 44 48 20 72 195 139 60 Shared Lane Traffic (%) Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 195 199 0 Turn Type Perm NA Perm pm+pt NA Perm Perm NA Perm NA Perm Perm NA	` '	1		7	7		1	8		7	7		8
Heavy Vehicles (%) 3% 4% 10% 3% 2% 5% 14% 0% 2% 4% 4% 8% Adj. Flow (vph) 36 590 121 113 704 44 48 20 72 195 139 60 Shared Lane Traffic (%) Share	, ,	0.92	0.77			1.00	1.00		0.45		0.76	0.66	
Adj. Flow (vph) 36 590 121 113 704 44 48 20 72 195 139 60 Shared Lane Traffic (%) Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 195 199 0 Turn Type Perm NA Perm Perm NA Perm NA Perm NA Protected Phases 6 6 6 2 2 2 4 8 8 Permitted Phases 6 6 6 5 2 2 4 8 8 Detector Phase 6 6 6 5 2 2 4 4 8 8 Detector Phase 6 6 6 5 2 2 4 4 8 8 Detector Phases 6 6 6 5 2 2 4 4 8 8 <													
Shared Lane Traffic (%) Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 195 199 0 170													
Lane Group Flow (vph) 36 590 121 113 704 44 48 92 0 195 199 0 Turn Type													
Turn Type Perm NA Perm pm+pt NA Perm Perm NA Perm <		36	590	121	113	704	44	48	92	0	195	199	0
Protected Phases 6 5 2 4 8 Permitted Phases 6 6 2 2 4 4 8 Detector Phase 6 6 6 5 2 2 4 4 8 8 Switch Phase Minimum Initial (s) 20.0 20.0 20.0 10.0 20.0 20.0 20.0 20.0 20.0 20.0													
Permitted Phases 6													
Detector Phase 6 6 6 5 2 2 4 4 8 8 8		6		6			2	4			8		
Switch Phase Minimum Initial (s) 20.0 20.0 20.0 7.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 36.0 36.0 36.0 12.0 36.0 36.0 41.0			6			2			4			8	
Minimum Initial (s) 20.0 20.0 20.0 7.0 20.0 20.0 10.0 10.0 10.0 Minimum Split (s) 36.0 36.0 36.0 12.0 36.0 36.0 41.0 41.0 41.0 41.0 Total Split (s) 79.0 79.0 79.0 20.0 99.0 99.0 41.0 41.0 41.0 41.0 Total Split (%) 56.4% 56.4% 56.4% 14.3% 70.7% 70.7% 29.3% 29.3% 29.3% 29.3% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 Lost Time (s) 0.5													
Minimum Split (s) 36.0 36.0 36.0 36.0 36.0 36.0 41.0 41.0 41.0 41.0 Total Split (s) 79.0 79.0 79.0 20.0 99.0 99.0 41.0 41.0 41.0 41.0 Total Split (%) 56.4% 56.4% 14.3% 70.7% 70.7% 29.3% 29.3% 29.3% 29.3% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.5<		20.0	20.0	20.0	7.0	20.0	20.0	10.0	10.0		10.0	10.0	
Total Split (s) 79.0 79.0 79.0 20.0 99.0 99.0 41.0 41.0 41.0 41.0 Total Split (%) 56.4% 56.4% 56.4% 14.3% 70.7% 70.7% 29.3% 29.3% 29.3% 29.3% Yellow Time (s) 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.5	, ,												
Total Split (%) 56.4% 56.4% 56.4% 14.3% 70.7% 70.7% 29.3% 29.3% 29.3% 29.3% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.5 0.	• • •												
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.5													
All-Red Time (s) 2.0 2.0 2.0 0.0 2.0 2.0 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5													
Lost Time Adjust (s) 0.5													
Total Lost Time (s) 6.5 6.5 6.5 4.5 6.5	, ,												
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max Min C-Max C-Max Min													
Lead-Lag Optimize? Recall Mode C-Max C-Max Min C-Max C-Max Min <	. ,												
Recall Mode C-Max C-Max Min C-Max C-Max Min		- 3	- 3	- 3									
Act Effct Green (s) 88.8 88.8 103.0 101.0 101.0 26.0 26.0 26.0 26.0 Actuated g/C Ratio 0.63 0.63 0.63 0.74 0.72 0.72 0.19 0.19 0.19 0.19 v/c Ratio 0.08 0.25 0.13 0.19 0.26 0.04 0.35 0.26 0.83 0.60 Control Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0	V I	C-Max	C-Max	C-Max	Min	C-Max	C-Max	Min	Min		Min	Min	
Actuated g/C Ratio 0.63 0.63 0.63 0.74 0.72 0.72 0.19 0.19 0.19 0.19 v/c Ratio 0.08 0.25 0.13 0.19 0.26 0.04 0.35 0.26 0.83 0.60 Control Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0													
v/c Ratio 0.08 0.25 0.13 0.19 0.26 0.04 0.35 0.26 0.83 0.60 Control Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0 Queue Delay 0.0													
Control Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0 Queue Delay 0.0													
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Total Delay 12.8 12.5 2.6 6.9 7.6 2.2 54.6 15.6 81.9 55.0													
	,												
IOS B B A A A A D B F D	LOS	В	В	Α	Α	Α.	Α.Δ	D D	В		F	D	
Approach Delay 10.9 7.2 29.0 68.3				,,	, ,		,,						

	-	\mathbf{x}	Ž	F	×	₹	ን	×	7	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		В			Α			С			Е	
Queue Length 50th (m)	3.8	35.4	0.0	8.4	32.2	0.0	12.3	4.8		55.2	49.5	
Queue Length 95th (m)	10.7	45.6	0.4	17.7	49.4	4.3	19.9	1.1		64.2	48.6	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	464	2316	941	667	2687	1097	181	454		311	433	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.08	0.25	0.13	0.17	0.26	0.04	0.27	0.20		0.63	0.46	

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 21.2 Intersection Capacity Utilization 84.9% Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

	۶	→	•	•	+	•	4	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	*		7	*		7
Traffic Volume (vph)	115	392	17	14	327	170	117	0	137	295	0	208
Future Volume (vph)	115	392	17	14	327	170	117	0	137	295	0	208
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		120.0	120.0		120.0	0.0		90.0	0.0		90.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.98	1.00		0.97	1.00		0.99	1.00		0.98
Frt												
Flt Protected												
Satd. Flow (prot)	1900	3762	1473	1667	3585	1743	1845	0	1881	1900	0	1863
Flt Permitted	0.546			0.426								
Satd. Flow (perm)	1033	3762	1438	709	3585	1695	1840	0	1854	1891	0	1832
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			23			233			152			217
Link Speed (k/h)		60	_,		60			50			50	
Link Distance (m)		364.5			407.5			160.5			164.1	
Travel Time (s)		21.9			24.5			11.6			11.8	
Confl. Peds. (#/hr)	2		1	1	2	2	1		1	2		2
Peak Hour Factor	1.00	0.79	1.00	0.88	1.00	0.73	0.98	0.94	0.90	0.93	0.94	0.96
Heavy Vehicles (%)	0%	1%	29%	14%	6%	9%	3%	0%	1%	0%	0%	2%
Adj. Flow (vph)	115	496	17	16	327	233	119	0	152	317	0	217
Shared Lane Traffic (%)		.,,			02,					· · ·		
Lane Group Flow (vph)	115	496	17	16	327	233	119	0	152	317	0	217
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm		Perm	Perm		Perm
Protected Phases	1 01111	4	1 01111	1 01111	8	1 01111	1 01111		1 01111	1 01111		1 01111
Permitted Phases	4	•	4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase		•					_		_			
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0		24.0	24.0		24.0
Total Split (s)	64.0	64.0	64.0	64.0	64.0	64.0	76.0		76.0	76.0		76.0
Total Split (%)	45.7%	45.7%	45.7%	45.7%	45.7%	45.7%	54.3%		54.3%	54.3%		54.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag	0.0	0.5	0.0	0.0	0.0	0.5	0.0		0.0	0.0		0.5
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	57.5	57.5	57.5	57.5	57.5	57.5	69.5		69.5	69.5		69.5
Actuated g/C Ratio	0.41	0.41	0.41	0.41	0.41	0.41	0.50		0.50	0.50		0.50
v/c Ratio	0.41	0.41	0.41	0.41	0.41	0.41	0.30		0.30	0.34		0.21
Control Delay	29.6	28.7	6.8	25.8	27.3	3.9	19.5		3.1	22.6		2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	29.6	28.7	6.8	25.8	27.3	3.9	19.5		3.1	22.6		2.8
LOS	29.0 C	28.7 C	0.8 A	25.8 C	27.3 C	3.9 A			3.1 A	22.0 C		
	C		А	C		А	В	10.2	А	C	114	Α
Approach Delay		28.3			17.8			10.3			14.6	

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		С			В			В			В	
Queue Length 50th (m)	22.0	48.6	0.0	2.8	30.6	0.0	18.2		0.0	54.6		0.0
Queue Length 95th (m)	38.1	53.4	4.0	7.8	41.5	5.2	30.2		11.7	77.2		13.4
Internal Link Dist (m)		340.5			383.5			136.5			140.1	
Turn Bay Length (m)	120.0		120.0	120.0		120.0			90.0			90.0
Base Capacity (vph)	424	1545	604	291	1472	833	913		996	938		1018
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.27	0.32	0.03	0.05	0.22	0.28	0.13		0.15	0.34		0.21

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 78 (56%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 19.2 Intersection LOS: B
Intersection Capacity Utilization 60.5% ICU Level of Service B

Analysis Period (min) 15

* User Entered Value

Splits and Phases: 5: Clarkdale Drive/Summerland Drive & Lakeland Drive

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NE	BL NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7		ሻ	7	ሻ		7
Traffic Vol, veh/h	88	627	52	39		24		24 (53	7	0	66
Future Vol, veh/h	88	627	52	39	474	24	,	24 (53	7	0	66
Conflicting Peds, #/hr	28	0	12	3	0	19	•	12 () 3	19	0	28
Sign Control	Free	Free	Free	Free	Free	Free	Sto	p Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield			Yield	-	-	Yield
Storage Length	1200	-	1150	1200	-	1150		0	300	0	-	450
Veh in Median Storage, #	-	0	-	-	0	-		- () -	-	0	-
Grade, %	-	0	-	-	0	-		- () -	-	0	-
Peak Hour Factor	100	94	72	100	98	100	10	00 95	100	100	95	53
Heavy Vehicles, %	5	3	0	8	3	8		0 (8 (14	0	3
Mvmt Flow	88	667	72	39	484	24		24 (53	7	0	125
Major/Minor	Major1			Major2			Mino	r1		Minor2		
Conflicting Flow All	512	0	0	679	0	0	120)3	365	1119	-	298
Stage 1	-	-	-	-	-	-	8!	55		590	-	-
Stage 2	-	-	-	-	-	-	34	18		529	-	-
Critical Hdwy	4.2	-	-	4.26	-	-	7	.5	7.06	7.78	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-	6	.5		6.78	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6	.5		6.78	-	-
Follow-up Hdwy	2.25	-	-	2.28	-	-	3	.5	3.38	3.64	-	3.33
Pot Cap-1 Maneuver	1029	-	-	870	-	-	14	12 (615	147	0	695
Stage 1	-	-	-	-	-	-	32	23 () -	432	0	-
Stage 2	-	-	-	-	-	-	64	17 () -	472	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1005	-	-	856	-	-	1(00	599	116	-	662
Mov Cap-2 Maneuver	-	-	-	-	-	-	1(00		116	-	-
Stage 1	-	-	-	-	-	-	20	92		385	-	-
Stage 2	-	-	-	-	-	-	48	39		386	-	-
Ü												
Approach	EB			WB			N	IB		SB		
HCM Control Delay, s	0.9			0.7			24	.2		13.1		
HCM LOS								С		В		
Minor Lane/Major Mvmt	NBLn1 l	VBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLi	n1 SBLn2)			
Capacity (veh/h)	100	599	1005	-	856	-	- 1 ⁻	16 662)			
HCM Lane V/C Ratio		0.088			0.046	-		06 0.188				
HCM Control Delay (s)	52	11.6	8.9		0.4	-		38 11.7				
HCM Lane LOS	F	В	А			-	-	E E				
HCM 95th %tile Q(veh)	0.9	0.3	0.3		0.4	-	- 0	.2 0.7				

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	*	^	7	*		7	*		7
Traffic Volume (vph)	206	293	102	51	372	198	60	0	34	137	0	149
Future Volume (vph)	206	293	102	51	372	198	60	0	34	137	0	149
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		120.0	120.0		120.0	0.0		90.0	0.0		90.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99		0.96				0.99					0.98
Frt												
Flt Protected												
Satd. Flow (prot)	1900	3551	1881	1900	3725	1900	1776	0	1696	1696	0	1827
Flt Permitted	0.536			0.521								
Satd. Flow (perm)	1007	3551	1808	990	3725	1900	1755	0	1696	1696	0	1784
Right Turn on Red			Yes			Yes			Yes	, , , ,		Yes
Satd. Flow (RTOR)			102			257			48			191
Link Speed (k/h)		60	.02		60	207		50	,,		50	
Link Distance (m)		364.5			407.5			160.5			164.1	
Travel Time (s)		21.9			24.5			11.6			11.8	
Confl. Peds. (#/hr)	5	21.7	5		21.0		5	11.0			11.0	5
Peak Hour Factor	0.97	0.72	1.00	0.98	0.98	0.77	0.88	0.87	0.71	1.00	0.87	0.78
Heavy Vehicles (%)	0%	7%	1%	0%	2%	0%	7%	0%	12%	12%	0%	4%
Adj. Flow (vph)	212	407	102	52	380	257	68	0	48	137	0	191
Shared Lane Traffic (%)	212	107	102	02	000	201	00	Ü	10	107		171
Lane Group Flow (vph)	212	407	102	52	380	257	68	0	48	137	0	191
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	Ü	Perm	Perm		Perm
Protected Phases	1 Cilli	4	1 Cilli	1 Cilli	8	1 Cilli	1 Cilli		1 CIIII	1 Cilli		1 Cilli
Permitted Phases	4	'	4	8	Ü	8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase	'	'	'	J	Ü							
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0		10.0	10.0		10.0
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	26.0	24.0		24.0	24.0		24.0
Total Split (s)	93.0	93.0	93.0	93.0	93.0	93.0	47.0		47.0	47.0		47.0
Total Split (%)	66.4%	66.4%	66.4%	66.4%	66.4%	66.4%	33.6%		33.6%	33.6%		33.6%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag	0.0	0.5	0.5	0.0	0.0	0.5	0.0		0.0	0.0		0.5
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	86.5	86.5	86.5	86.5	86.5	86.5	40.5		40.5	40.5		40.5
Actuated g/C Ratio	0.62	0.62	0.62	0.62	0.62	0.62	0.29		0.29	0.29		0.29
v/c Ratio	0.34	0.02	0.02	0.02	0.02	0.20	0.27		0.27	0.28		0.29
Control Delay	14.8	11.8	2.1	11.3	11.6	1.6	37.8		9.8	40.4		6.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	14.8	11.8	2.1	11.3	11.6	1.6	37.8		9.8	40.4		6.1
LOS	14.8 B	11.8 B	2.1 A	11.3 B	11.0 B	1.0 A	37.8 D		9.8 A	40.4 D		0. I A
Approach Delay	D	11.3	H	Ď	7.8	H	U	26.2	А	U	20.4	A
Approactibelay		11.3			۵.۱			∠0.∠			∠0.4	

	۶	-	•	•	•	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			Α			С			С	
Queue Length 50th (m)	28.3	24.2	0.0	5.8	22.3	0.0	14.7		0.0	31.0		0.0
Queue Length 95th (m)	45.2	24.7	7.1	11.9	29.7	4.8	27.0		5.7	50.3		10.3
Internal Link Dist (m)		340.5			383.5			136.5			140.1	
Turn Bay Length (m)	120.0		120.0	120.0		120.0			90.0			90.0
Base Capacity (vph)	622	2194	1156	611	2301	1272	507		524	490		651
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.34	0.19	0.09	0.09	0.17	0.20	0.13		0.09	0.28		0.29

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 12.6 Intersection Capacity Utilization 57.9% Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

* User Entered Value

Splits and Phases: 5: Clarkdale Drive/Summerland Drive & Lakeland Drive

Intersection						
Int Delay, s/veh	6.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	1≽	
Traffic Vol, veh/h	57	72	36	28	37	32
Future Vol, veh/h	57	72	36	28	37	32
Conflicting Peds, #/hr	2	4	4	0	0	2
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	9 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	82	69	100	77	100
Heavy Vehicles, %	0	6	14	7	3	6
Mvmt Flow	60	88	52	28	48	32
Major/Minor	Minano		Ma!1		Mata 2	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	202	72	84	0	-	0
Stage 1	68	-	-	-	-	-
Stage 2	134	-	-	-	-	-
Critical Hdwy	6.4	6.26	4.24	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.354	2.326	-	-	-
Pot Cap-1 Maneuver	791	979	1440	-	-	-
Stage 1	960	-	-	-	-	-
Stage 2	897	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	757	972	1435	-	-	-
Mov Cap-2 Maneuver	757	-	-	-	-	-
Stage 1	957	-	-	-	-	-
Stage 2	861	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10		4.9		0	
HCM LOS	В		4.7		U	
TOW LOS	ט					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1435	- 872				
HCM Lane V/C Ratio	0.036	- 0.17				
HCM Control Delay (s)	7.6	0 10				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0.1	- 0.6				
		0.0				

Intersection							
Int Delay, s/veh	1						
Movement	EB		V	VBL	WBT	NBL	NBR
Lane Configurations	1				4	W	
Traffic Vol, veh/h	6			7	35	5	3
Future Vol, veh/h	6			7	35	5	3
Conflicting Peds, #/hr		0 18		18	0	18	18
Sign Control	Fre		F	ree	Free	Stop	Stop
RT Channelized		- None		-	None	-	None
Storage Length				-	-	0	-
Veh in Median Storage, #		0 -		-	0	0	-
Grade, %		0 -		-	0	0	-
Peak Hour Factor	7			100	100	63	86
Heavy Vehicles, %		7 6		0	14	20	67
Mvmt Flow	8	5 28		7	35	8	3
Major/Minor	Major	1	Ma	jor2		Minor1	
Conflicting Flow All		0 0		130	0	183	134
Stage 1				130	-	116	134
Stage 2				-	-	67	-
Critical Hdwy				4.1	-	6.6	6.87
Critical Hdwy Stg 1				4.1	-	5.6	0.07
Critical Hdwy Stg 2				-	-	5.6	-
Follow-up Hdwy				2.2	-	3.68	3.903
Pot Cap-1 Maneuver			_1	468	-	767	3.903 767
				400	-	866	707
Stage 1 Stage 2				-	-	912	-
Platoon blocked, %				-	-	912	-
			_1	446	-	740	744
Mov Cap-1 Maneuver				440	-	740	744
Mov Cap-2 Maneuver				-	-	853	-
Stage 1				-	-	894	
Stage 2				-	-	ŏ94	-
Approach	El	3		WB		NB	
HCM Control Delay, s		0		1.3		9.9	
HCM LOS						А	
Minor Lane/Major Mvmt	NBLn1 EB	T EBR	WBL V	VBT			
Capacity (veh/h)	741		1446	-			
HCM Lane V/C Ratio	0.015		0.005	-			
HCM Control Delay (s)	9.9			0			
HCM Lane LOS	9.9 A		7.5 A	A			
HCM 95th %tile Q(veh)	0		0	- A			
HOW YOUR WINE U(VEII)	U		U	-			

Interception						
Intersection Int Delay, s/veh	2.6					
int Delay, Siveri						
Movement	EBL	EBR	NBL	NBT	SBT	S
Lane Configurations	W			र्स	₽.	
Traffic Vol, veh/h	11	30	31	53	91	1!
Future Vol, veh/h	11	30	31	53	91	15
Conflicting Peds, #/hr	10	23	23	0	0	10
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	100	70	88	67	100
Heavy Vehicles, %	0	7	16	4	2	0
Mvmt Flow	12	30	44	60	136	15
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	325	189	174	0	-	0
Stage 1	166	-	- 17-7	-	_	-
Stage 2	159	_	_		_	
Critical Hdwy	6.4	6.27	4.26	_		
Critical Hdwy Stg 1	5.4	0.21	7.20	_		_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.363	2.344	_	-	_
Pot Cap-1 Maneuver	673	840	1322	_		_
Stage 1	868	-	1022	_		_
Stage 2	875	_		_	_	_
Platoon blocked, %	010			_		_
Mov Cap-1 Maneuver	624	808	1296	_	_	_
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	624	-	1270		_	
Stage 1	851	_	_	_		
Stage 2	828	_	_	_		_
Olugo Z	020					
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s	10.1		3.3		0	
HCM LOS	В					
NA!	ND	NDT EDI 4	CDT CD5			
Minor Lane/Major Mvmt		NBT EBLn1	SBT SBR			
Capacity (veh/h)	1296	- 745				
HCM Lane V/C Ratio	0.034	- 0.056				
HCM Control Delay (s)	7.9	0 10.1				
HCM Lane LOS	А	A B				
HCM 95th %tile Q(veh)	0.1	- 0.2				

	₩	\mathbf{x}	Ì	F	*	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ች	^	7	ሻ	^	7	ሻ	1>		ሻ	f)	
Traffic Volume (vph)	107	852	37	47	667	146	36	31	57	72	22	60
Future Volume (vph)	107	852	37	47	667	146	36	31	57	72	22	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	130.0		90.0	115.0		115.0	60.0		0.0	0.0		120.0
Storage Lanes	1		1	1		1	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.97	1.00		0.98	0.99	0.96		0.96	0.98	
Frt			0.850			0.850		0.909			0.893	
Flt Protected												
Satd. Flow (prot)	1810	3762	1538	1863	3725	1615	1667	1604	0	1845	1569	0
Flt Permitted	0.411			0.273			0.702			0.421		
Satd. Flow (perm)	743	3762	1488	507	3725	1576	1160	1604	0	746	1569	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			52			146		58			60	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		405.8			388.5			372.2			450.4	
Travel Time (s)		24.3			23.3			26.8			32.4	
Confl. Peds. (#/hr)	2		6	6		2	9		46	46		9
Peak Hour Factor	0.76	0.81	0.71	0.98	1.00	1.00	0.45	0.48	0.57	1.00	0.92	1.00
Heavy Vehicles (%)	5%	1%	5%	2%	2%	0%	14%	3%	4%	3%	5%	7%
Adj. Flow (vph)	141	1052	52	48	667	146	80	65	100	72	24	60
Shared Lane Traffic (%)												
Lane Group Flow (vph)	141	1052	52	48	667	146	80	165	0	72	84	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6		6	2		2	4			8		
Detector Phase	6	6	6	2	2	2	4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	36.0	36.0	36.0	36.0	36.0	36.0	41.0	41.0		41.0	41.0	
Total Split (s)	89.0	89.0	89.0	89.0	89.0	89.0	41.0	41.0		41.0	41.0	
Total Split (%)	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	31.5%	31.5%		31.5%	31.5%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Min	Min		Min	Min	
Act Effct Green (s)	102.5	102.5	102.5	102.5	102.5	102.5	14.5	14.5		14.5	14.5	
Actuated g/C Ratio	0.79	0.79	0.79	0.79	0.79	0.79	0.11	0.11		0.11	0.11	
v/c Ratio	0.24	0.35	0.04	0.12	0.23	0.11	0.62	0.72		0.87	0.37	
Control Delay	5.3	4.7	1.2	4.8	4.1	0.9	74.6	52.7		124.2	23.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.3	4.7	1.2	4.8	4.1	0.9	74.6	52.7		124.2	23.4	
LOS	А	Α	Α	Α	Α	Α	E	D		F	С	
Approach Delay		4.7			3.6			59.9			69.9	

	-	\mathbf{x}	٦	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		Α			Α			Е			Е	
Queue Length 50th (m)	8.1	33.9	0.0	2.5	18.8	0.0	21.1	28.3		19.5	6.0	
Queue Length 95th (m)	15.4	47.4	1.9	7.5	32.0	5.3	17.3	17.7		#39.3	21.1	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	585	2966	1184	399	2937	1273	307	468		197	460	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.24	0.35	0.04	0.12	0.23	0.11	0.26	0.35		0.37	0.18	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 104 (80%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 13.7
Intersection Capacity Utilization 82.7%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{*} User Entered Value

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Intersection												
Int Delay, s/veh 20	.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7	*		7	ሻ		7
Traffic Vol, veh/h	29	307	20	50	880	7	90	0	61	42	0	123
Future Vol, veh/h	29	307	20	50	880	7	90	0	61	42	0	123
Conflicting Peds, #/hr	2	0	2	2	0	2	2	0	2	2	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield	-	-	Yield	-	-	Yield
Storage Length	1200	-	1150	1200	-	1150	0	-	300	0	-	450
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	93	56	83	100	100	52	96	100	100	96	100
Heavy Vehicles, %	7	3	0	15	3	29	3	0	5	5	0	2
Mvmt Flow	29	330	36	60	880	7	173	0	61	42	0	123
Major/Minor	Major1			Major2	_		Minor1			Minor2		
Conflicting Flow All	882	0	0	332	0	0	952	-	169	1227	-	444
Stage 1	-	-	-	-	-	-	390	-	-	1002	-	-
Stage 2	-	-	-	-	-	-	562	-	-	225	-	-
Critical Hdwy	4.24	-	-	4.4	-	-	7.56	-	7	7.6	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	-	-	6.6	-	-
Critical Hdwy Stg 2	-	-	-	- 0.05	-	-	6.56	-	-	6.6	-	-
Follow-up Hdwy	2.27	-	-	2.35	-	-	3.53	-	3.35	3.55	-	3.32
Pot Cap-1 Maneuver	732	-	-	1136	-	-	212	0	836	131	0	561
Stage 1	-	-	-	-	-	-	603	0	-	254	0	-
Stage 2	-	-	-	-	-	-	476	0	-	749	0	-
Platoon blocked, %	701	-	-	1104	-	-	150		022	110		FFO
Mov Cap-1 Maneuver	731	-	-	1134	-	-	~ 153	-	833	113	-	559
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 153	-	-	113	-	-
Stage 1	-	-	-	-	-	-	578 351	-	-	244 665	-	-
Stage 2	-	-	-	-	-	-	331	-	-	000	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.5			129.3			23.7		
HCM LOS	0.7			0.0			F			C		
Minor Lane/Major Mvmt	NBLn1 l	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	153	833	731		1134	-	- 113	559				
HCM Lane V/C Ratio	1.131	0.073	0.04		0.053	-	- 0.372	0.22				
HCM Control Delay (s)	171.4	9.7	10.1		8.4	-	- 54.6	13.2				
HCM Lane LOS	F	Α	В		Α	-	- F	В				
HCM 95th %tile Q(veh)	9.4	0.2	0.1		0.2	-	- 1.5	8.0				
Notes												
~: Volume exceeds capacit	y \$: De	elay exc	eeds 30	00s +: Com	putation	Not D	efined *: All	major v	olume i	n platoon		

170324 AM Peak Hour Total.syn J. Willis

	۶	→	•	•	-	•	4	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	*		7	*		7
Traffic Volume (vph)	115	392	17	15	327	170	117	0	146	295	0	208
Future Volume (vph)	115	392	17	15	327	170	117	0	146	295	0	208
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		120.0	120.0		120.0	0.0		90.0	0.0		90.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.98	1.00		0.97	1.00		0.99	1.00		0.98
Frt												
Flt Protected												
Satd. Flow (prot)	1900	3762	1473	1681	3585	1743	1845	0	1881	1900	0	1863
Flt Permitted	0.546			0.426								
Satd. Flow (perm)	1033	3762	1438	715	3585	1695	1840	0	1854	1891	0	1832
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			23			233			152			217
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		364.5			407.5			160.5			164.1	
Travel Time (s)		21.9			24.5			11.6			11.8	
Confl. Peds. (#/hr)	2	,	1	1		2	1		1	2		2
Peak Hour Factor	1.00	0.79	1.00	0.94	1.00	0.73	0.98	0.95	0.96	0.93	0.95	0.96
Heavy Vehicles (%)	0%	1%	29%	13%	6%	9%	3%	0%	1%	0%	0%	2%
Adj. Flow (vph)	115	496	17	16	327	233	119	0	152	317	0	217
Shared Lane Traffic (%)		.,,	.,		02.					· · ·		
Lane Group Flow (vph)	115	496	17	16	327	233	119	0	152	317	0	217
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm		Perm	Perm	Ţ,	Perm
Protected Phases	1 01111	4	1 01111	1 01111	8	1 01111	1 01111		1 01111	1 01111		1 01111
Permitted Phases	4	•	4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase		•					_		_			
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0		10.0	10.0		10.0
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	26.0	24.0		24.0	24.0		24.0
Total Split (s)	64.0	64.0	64.0	64.0	64.0	64.0	76.0		76.0	76.0		76.0
Total Split (%)	45.7%	45.7%	45.7%	45.7%	45.7%	45.7%	54.3%		54.3%	54.3%		54.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	57.5	57.5	57.5	57.5	57.5	57.5	69.5		69.5	69.5		69.5
Actuated g/C Ratio	0.41	0.41	0.41	0.41	0.41	0.41	0.50		0.50	0.50		0.50
v/c Ratio	0.27	0.32	0.03	0.05	0.41	0.28	0.13		0.15	0.34		0.21
Control Delay	29.6	28.7	6.8	25.7	27.3	3.9	19.5		3.1	22.6		2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	29.6	28.7	6.8	25.7	27.3	3.9	19.5		3.1	22.6		2.8
LOS	29.0 C	20.7 C	0.0 A	23.7 C	27.3 C	3.9 A	19.3 B		3. I	22.0 C		2.0 A
Approach Delay	C	28.3	A	C	17.8	H	D	10.3	H	C	14.6	A
дригоасті петау		Zŏ.3			۱/.Ծ			10.3			14.0	

	۶	-	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		С			В			В			В	
Queue Length 50th (m)	22.0	48.6	0.0	2.8	30.6	0.0	18.2		0.0	54.6		0.0
Queue Length 95th (m)	38.1	53.4	4.0	8.0	41.5	5.2	30.2		11.7	77.2		13.4
Internal Link Dist (m)		340.5			383.5			136.5			140.1	
Turn Bay Length (m)	120.0		120.0	120.0		120.0			90.0			90.0
Base Capacity (vph)	424	1545	604	293	1472	833	913		996	938		1018
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.27	0.32	0.03	0.05	0.22	0.28	0.13		0.15	0.34		0.21

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 72 (51%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 19.2 Intersection Capacity Utilization 65.9% Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Clarkdale Drive/Summerland Drive & Lakeland Drive

^{*} User Entered Value

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	INDL	4) 	JUK
Traffic Vol, veh/h	-T -	65	116	1 73	37	47
Future Vol, veh/h	24	65	116	73	37	47
Conflicting Peds, #/hr	1	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #		-	-	0	0	_
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	40	73	45	36	73
Heavy Vehicles, %	0	3	6	1	3	4
Mvmt Flow	24	163	159	162	103	64
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	617	136	168	0	-	0
Stage 1	136	-	-	-		-
Stage 2	481	-	-	-	-	-
Critical Hdwy	6.4	6.23	4.16	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.327	2.254	-		-
Pot Cap-1 Maneuver	457	910	1386	-	-	-
Stage 1	895	-	-	-	-	-
Stage 2	626			-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	399	909	1386	-	-	-
Mov Cap-2 Maneuver	399	-	-	-	-	-
Stage 1	894	-	-	-	-	-
Stage 2	547	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11		3.9		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1386	- 781				
HCM Lane V/C Ratio	0.115	- 0.239				
HCM Control Delay (s)	7.9	0 11				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0.4	- 0.9				

Intersection								
Int Delay, s/veh	0.4							
Movement		EBT	EBR	,	WBL	WBT	NBL	NBR
Lane Configurations		1				4	Y	71211
Traffic Vol, veh/h		53	43		7	161	0	0
Future Vol, veh/h		53	43		7	161	0	0
Conflicting Peds, #/hr		0	0		0	0	0	0
Sign Control		Free	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		_	-	0	-
Veh in Median Storage, #	ŧ	0	-		-	0	0	-
Grade, %		0	-		_	0	0	-
Peak Hour Factor		100	25		25	64	25	25
Heavy Vehicles, %		3	2		2	10	2	2
Mvmt Flow		53	172		28	252	0	0
Major/Minor	Ma	ajor1		M	ajor2		Minor1	
Conflicting Flow All	1410	0	0		225	0	447	139
Stage 1		-	-		-	-	139	-
Stage 2		-	-		-	-	308	-
Critical Hdwy		-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1		-	_		-	-	5.42	-
Critical Hdwy Stg 2		-	-		-	-	5.42	_
Follow-up Hdwy		_	-	2	2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-	-		1344	-	569	909
Stage 1		_	_		_	-	888	-
Stage 2		-	-		-	-	745	-
Platoon blocked, %		_	-			-	, , ,	
Mov Cap-1 Maneuver		-	-		1344	-	555	909
Mov Cap-2 Maneuver		-	_		_	-	555	
Stage 1		-	-		-	-	888	-
Stage 2		-	-		-	-	727	-
- · · g · <u>-</u>								
Approach		EB			WB		NB	
HCM Control Delay, s		0			0.8		0	
HCM LOS		U			0.0		A	
HOW LOS							^	
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL '	WBT			
Capacity (veh/h)	- NDLIII	-		1344	-			
HCM Lane V/C Ratio	-	_		0.021	_			
HCM Control Delay (s)	0	-	-	7.7	0			
HCM Lane LOS	A	_	-	Α.	A			
HCM 95th %tile Q(veh)	- A	-	-	0.1	- A			
HOW FOUT FOUTE Q(VEH)	-	-	-	0.1	-			

Intersection									
Int Delay, s/veh	33.2								
Movement		EBT	EBR		WBL	WBT	NBL	NBR	
Lane Configurations		ĵ.				सी	W		
Traffic Vol., veh/h		26	27		68	88	80	64	
Future Vol, veh/h		26	27		68	88	80	64	
Conflicting Peds, #/hr		0	3		4	0	0	4	
Sign Control		Free	Free		Free	Free	Stop	Stop	
RT Channelized		-	None		_	None	-	None	
Storage Length		-	-		-	-	0	-	
Veh in Median Storage,	#	0	-		-	0	0	-	
Grade, %		0	-		-	0	0	-	
Peak Hour Factor		93	32		25	79	35	27	
Heavy Vehicles, %		4	0		1	11	1	0	
Mvmt Flow		28	84		272	111	229	237	
Major/Minor		Major1		N	1ajor2		Minor1		
Conflicting Flow All		0	0		116	0	729	78	
Stage 1		-	-		_	-	74	-	
Stage 2		-	-		-	-	655	-	
Critical Hdwy		-	-		4.11	-	6.41	6.2	
Critical Hdwy Stg 1		-	-		-	-	5.41	-	
Critical Hdwy Stg 2		-	-		-	-	5.41	-	
Follow-up Hdwy		-	-	:	2.209	-	3.509	3.3	
Pot Cap-1 Maneuver		-	-		1479	-	391	988	
Stage 1		-	-		-	-	951	-	
Stage 2		-	-		-	-	519	-	
Platoon blocked, %		-	-			-			
Mov Cap-1 Maneuver		-	-		1474	-	313	981	
Mov Cap-2 Maneuver		-	-		-	-	313	-	
Stage 1		-	-		-	-	948	-	
Stage 2		-	-		-	-	417	-	
Approach		EB			WB		NB		
HCM Control Delay, s		0			5.7		63.9		
HCM LOS							F		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				
Capacity (veh/h)	479	-	-	1474	-				
HCM Lane V/C Ratio	0.972	-	-	0.185	-				
HCM Control Delay (s)	63.9	-	-	8	0				
HCM Lane LOS	F	-	-	Α	Α				
HCM 95th %tile Q(veh)	12.4	-	-	0.7	-				

Intersection						
	8.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	<u> </u>	
Traffic Vol, veh/h	45	60	75	98	27	18
Future Vol, veh/h	45	60	75	98	27	18
Conflicting Peds, #/hr	1	2	2	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	56	35	28	84	68	38
Heavy Vehicles, %	0	2	9	2	15	0
Mvmt Flow	80	171	268	117	40	47
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	718	67	89	0	-	0
Stage 1	65	-	-	-	-	-
Stage 2	653	-	-	-	-	-
Critical Hdwy	6.4	6.22	4.19	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-		-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.318	2.281	-	-	-
Pot Cap-1 Maneuver	399	997	1463	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	522	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	320	994	1461	-	-	-
Mov Cap-2 Maneuver	320	-	-	-	-	-
Stage 1	961	-	-	-	-	-
Stage 2	419	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.4		5.6		0	
HCM LOS	С					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1461	- 594				
HCM Lane V/C Ratio	0.183	- 0.424				
HCM Control Delay (s)	8	0 15.4				
HCM Lane LOS	A	A C				
HCM 95th %tile Q(veh)	0.7	- 2.1				
/ 5411 / 54110 (2(1011)	0.7	۷.۱				

Intersection						
	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIK	HUL	↑	<u> </u>	ODIT
Traffic Vol, veh/h	112	10	0	45	9	0
Future Vol, veh/h	112	10	0	45	9	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	_	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	25	25	25	52	75	25
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	448	40	0	87	12	0
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	99	12	- Wajori	0	-	0
Stage 1	12	- '-	-	-		-
Stage 2	87	-	-	-		_
Critical Hdwy	6.42	6.22	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	-	
Pot Cap-1 Maneuver	900	1069	0	-	-	0
Stage 1	1011	-	0	-		0
Stage 2	936	-	0	-	-	0
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	900	1069	-	-	-	-
Mov Cap-2 Maneuver	900	-	-	-	-	-
Stage 1	1011	-	-	-	-	-
Stage 2	936	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.4		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBT EBLn1	SBT				
Capacity (veh/h)	- 912	-				
HCM Lane V/C Ratio	- 0.535	-				
HCM Control Delay (s)	- 13.4	-				
HCM Lane LOS	- B	-				
HCM 95th %tile Q(veh)	- 3.3	-				
/						

	₩	×	Ž	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ř	† †	7	, j	† †	7	Ţ	f)		ň	f)	
Traffic Volume (vph)	33	454	70	113	704	72	36	11	66	160	92	51
Future Volume (vph)	33	454	70	113	704	72	36	11	66	160	92	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	130.0		90.0	115.0		115.0	60.0		0.0	0.0		120.0
Storage Lanes	1		1	1		1	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.96	0.99		0.98	0.99	0.99		0.99	0.99	
Frt			0.850			0.850		0.892			0.955	
Flt Protected												
Satd. Flow (prot)	1845	3654	1468	1845	3725	1568	1667	1646	0	1827	1714	0
Flt Permitted	0.397			0.398			0.483			0.692		
Satd. Flow (perm)	732	3654	1415	730	3725	1533	800	1646	0	1255	1714	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121			141		72			15	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		405.8			388.5			372.2			450.4	
Travel Time (s)		24.3			23.3			26.8			32.4	
Confl. Peds. (#/hr)	1	21.0	7	7	20.0	1	8	20.0	7	7	02.1	8
Peak Hour Factor	0.92	0.77	0.58	1.00	1.00	0.51	0.75	0.39	0.92	0.66	0.66	0.85
Heavy Vehicles (%)	3%	4%	10%	3%	2%	3%	14%	0%	2%	4%	4%	8%
Adj. Flow (vph)	36	590	121	113	704	141	48	28	72	242	139	60
Shared Lane Traffic (%)	00	0,0		110	, , ,				,_	212	107	
Lane Group Flow (vph)	36	590	121	113	704	141	48	100	0	242	199	0
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	1 01111	6	1 01111	5	2	1 01111	1 01111	4		1 01111	8	
Permitted Phases	6		6	2		2	4	'		8		
Detector Phase	6	6	6	5	2	2	4	4		8	8	
Switch Phase	, ,				_	_	•	•				
Minimum Initial (s)	20.0	20.0	20.0	7.0	20.0	20.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	36.0	36.0	36.0	12.0	36.0	36.0	41.0	41.0		41.0	41.0	
Total Split (s)	79.0	79.0	79.0	20.0	99.0	99.0	41.0	41.0		41.0	41.0	
Total Split (%)	56.4%	56.4%	56.4%	14.3%	70.7%	70.7%	29.3%	29.3%		29.3%	29.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	0.0	2.0	2.0	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Total Lost Time (s)	6.5	6.5	6.5	4.5	6.5	6.5	6.5	6.5		6.5	6.5	
Lead/Lag	Lag	Lag	Lag	Lead	0.5	0.5	0.0	0.5		0.5	0.5	
Lead-Lag Optimize?	Lag	Lag	Lag	Load								
Recall Mode	C-Max	C-Max	C-Max	Min	C-Max	C-Max	Min	Min		Min	Min	
Act Effct Green (s)	84.3	84.3	84.3	98.8	96.8	96.8	30.2	30.2		30.2	30.2	
Actuated g/C Ratio	0.60	0.60	0.60	0.71	0.69	0.69	0.22	0.22		0.22	0.22	
v/c Ratio	0.00	0.00	0.00	0.71	0.07	0.07	0.22	0.24		0.22	0.52	
	14.2	14.3	2.7	8.0	9.0	1.5	48.5	16.2		86.1	49.0	
Control Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Queue Delay	14.2		2.7		9.0			16.2		86.1		
Total Delay		14.3		8.0		1.5	48.5				49.0	
LOS Approach Dolov	В	12.4	А	А	A	А	D	B		F	D	
Approach Delay		12.4			7.8			26.7			69.4	

	4	λ	٦	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		В			Α			С			Е	
Queue Length 50th (m)	4.4	40.5	0.0	10.0	38.1	0.0	11.5	6.4		67.6	46.7	
Queue Length 95th (m)	10.7	45.6	0.4	17.7	49.4	0.0	19.7	0.0		67.7	48.6	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	441	2201	900	638	2575	1103	197	459		309	433	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.08	0.27	0.13	0.18	0.27	0.13	0.24	0.22		0.78	0.46	

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 64 (46%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 22.4 Intersection Capacity Utilization 84.9% Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

	۶	→	•	•	←	•	•	†	/	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	^	7	, j	†	7	ň		7	ň		7
Traffic Volume (vph)	29	307	20	50	880	7	90	0	61	42	0	123
Future Volume (vph)	29	307	20	50	880	7	90	0	61	42	0	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		115.0	120.0		115.0	0.0		30.0	0.0		45.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.97	1.00		0.97	1.00		0.98	1.00		0.98
Frt									0.850			0.850
Flt Protected												
Satd. Flow (prot)	1776	3689	1900	1652	3689	1473	1845	0	1538	1810	0	1583
Flt Permitted	0.290			0.561								
Satd. Flow (perm)	514	3689	1848	922	3689	1432	1836	0	1513	1801	0	1557
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			36			23			61			123
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		810.1			384.2			224.5			173.1	
Travel Time (s)		48.6			23.1			16.2			12.5	
Confl. Peds. (#/hr)	2		2	2		2	2		2	2		2
Peak Hour Factor	1.00	0.93	0.56	0.83	1.00	1.00	0.52	0.96	1.00	1.00	0.96	1.00
Heavy Vehicles (%)	7%	3%	0%	15%	3%	29%	3%	0%	5%	5%	0%	2%
Adj. Flow (vph)	29	330	36	60	880	7	173	0	61	42	0	123
Shared Lane Traffic (%)												
Lane Group Flow (vph)	29	330	36	60	880	7	173	0	61	42	0	123
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm		Perm	Perm		Perm
Protected Phases		4			8							
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0		24.0	24.0		24.0
Total Split (s)	90.0	90.0	90.0	90.0	90.0	90.0	50.0		50.0	50.0		50.0
Total Split (%)	64.3%	64.3%	64.3%	64.3%	64.3%	64.3%	35.7%		35.7%	35.7%		35.7%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag												
Lead-Lag Optimize?												
	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	83.5	83.5	83.5	83.5	83.5	83.5	43.5		43.5	43.5		43.5
Actuated g/C Ratio	0.60	0.60	0.60	0.60	0.60	0.60	0.31		0.31	0.31		0.31
v/c Ratio	0.09	0.15	0.03	0.11	0.40	0.01	0.30		0.12	0.08		0.22
Control Delay	13.1	12.7	3.5	12.9	15.6	0.3	38.6		8.6	34.7		6.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	13.1	12.7	3.5	12.9	15.6	0.3	38.6		8.6	34.7		6.6
LOS	В	В	А	В	В	Α	D		А	С		А
Approach Delay		11.9			15.4			30.7			13.8	

	۶	-	•	•	•	•		†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			В			С			В	
Queue Length 50th (m)	3.5	20.3	0.0	7.2	64.9	0.0	38.4		0.0	8.7		0.0
Queue Length 95th (m)	8.7	27.6	1.4	13.1	78.6	0.4	32.1		10.9	18.2		15.0
Internal Link Dist (m)		786.1			360.2			200.5			149.1	
Turn Bay Length (m)	120.0		115.0	120.0		115.0			30.0			45.0
Base Capacity (vph)	306	2200	1116	549	2200	863	570		512	559		568
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.09	0.15	0.03	0.11	0.40	0.01	0.30		0.12	0.08		0.22

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 51 (36%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.40

Intersection Signal Delay: 16.5

Intersection LOS: B Intersection Capacity Utilization 60.6% ICU Level of Service B

Analysis Period (min) 15 User Entered Value

Splits and Phases: 1: Davenport Drive/Summerwood Drive & Lakeland Drive

Intersection			
Intersection Delay, s/veh	16.1		
Intersection LOS	С		

Movement	EBU	EBT	EBR	WBU	WBL	WBT	NBU	NBL	NBR
Lane Configurations		1≽				4		W	
Traffic Vol, veh/h	0	26	27	0	68	88	0	80	64
Future Vol, veh/h	0	26	27	0	68	88	0	80	64
Peak Hour Factor	0.92	0.93	0.32	0.92	0.25	0.79	0.92	0.35	0.27
Heavy Vehicles, %	2	4	0	2	1	11	2	1	0
Mvmt Flow	0	28	84	0	272	111	0	229	237
Number of Lanes	0	1	0	0	0	1	0	1	0
Approach		EB			WB			NB	
Opposing Approach		WB			EB				
Opposing Lanes		1			1			0	
Conflicting Approach Left					NB			EB	
Conflicting Lanes Left		0			1			1	
Conflicting Approach Right		NB						WB	
Conflicting Lanes Right		1			0			1	
HCM Control Delay		9.8			15.9			17.8	
HCM LOS		Α			С			С	

Lane	NBLn1	EBLn1	WBLn1	
Vol Left, %	56%	0%	44%	
Vol Thru, %	0%	49%	56%	
Vol Right, %	44%	51%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	144	53	156	
LT Vol	80	0	68	
Through Vol	0	26	88	
RT Vol	64	27	0	
Lane Flow Rate	466	112	383	
Geometry Grp	1	1	1	
Degree of Util (X)	0.664	0.174	0.583	
Departure Headway (Hd)	5.136	5.571	5.475	
Convergence, Y/N	Yes	Yes	Yes	
Cap	703	643	659	
Service Time	3.169	3.618	3.509	
HCM Lane V/C Ratio	0.663	0.174	0.581	
HCM Control Delay	17.8	9.8	15.9	
HCM Lane LOS	С	Α	С	
HCM 95th-tile Q	5.1	0.6	3.8	

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	*	^	7	je i	i	7	ሻ		7
Traffic Vol, veh/h	88	627	70	39	474	24	25		53	7	0	66
Future Vol, veh/h	88	627	70	39	474	24	25	0	53	7	0	66
Conflicting Peds, #/hr	28	0	12	3	0	19	12	0	3	19	0	28
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	Yield			Yield	-	-	Yield
Storage Length	1200	-	1150	1200	-	1150	C	-	300	0	-	450
Veh in Median Storage, #	-	0	-	-	0	-		0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	94	97	100	98	100	100	97	100	100	97	53
Heavy Vehicles, %	5	3	0	8	3	8	C	0	8	14	0	3
Mvmt Flow	88	667	72	39	484	24	25	0	53	7	0	125
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	512	0	0	679	0	0	1203	_	365	1119	-	298
Stage 1	-	-	-	-	-	-	855	-	-	590	-	-
Stage 2	-	-	-	-	-	-	348	-	-	529	-	-
Critical Hdwy	4.2	-	-	4.26	-	-	7.5	-	7.06	7.78	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	-	-	6.78	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	-	-	6.78	-	-
Follow-up Hdwy	2.25	-	-	2.28	-	-	3.5	-	3.38	3.64	-	3.33
Pot Cap-1 Maneuver	1029	-	-	870	-	-	142	0	615	147	0	695
Stage 1	-	-	-	-	-	-	323	0	-	432	0	-
Stage 2	-	-	-	-	-	-	647	0	-	472	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1005	-	-	856	-	-	100	-	599	116	-	662
Mov Cap-2 Maneuver	-	-	-	-	-	-	100	-	-	116	-	-
Stage 1	-	-	-	-	-	-	292	-	-	385	-	-
Stage 2	-	-	-	-	-	-	489	-	-	386	-	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.9			0.7			24.7			13.1		
HCM LOS							С			В		
Minor Lane/Major Mvmt	NBLn1 l	VBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	100	599	1005		856		- 116	662				
HCM Lane V/C Ratio		0.088			0.046	-		0.188				
HCM Control Delay (s)	52.6	11.6	8.9		9.4	-	- 38					
HCM Lane LOS	F	В	Α			-	- E					
HCM 95th %tile Q(veh)	0.9	0.3	0.3		0.1	-	- 0.2					
,												

	۶	→	•	•	←	•	•	†	<i>></i>	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ		7	ሻ		7
Traffic Volume (vph)	206	293	102	56	372	198	60	0	34	137	0	149
Future Volume (vph)	206	293	102	56	372	198	60	0	34	137	0	149
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		120.0	120.0		120.0	0.0		90.0	0.0		90.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99		0.96				0.99					0.98
Frt												
Flt Protected												
Satd. Flow (prot)	1900	3551	1881	1900	3725	1900	1776	0	1696	1696	0	1827
Flt Permitted	0.536			0.521								
Satd. Flow (perm)	1007	3551	1808	990	3725	1900	1755	0	1696	1696	0	1784
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			102			257			48			191
Link Speed (k/h)		60	.02		60	207		50			50	.,.
Link Distance (m)		364.5			407.5			160.5			164.1	
Travel Time (s)		21.9			24.5			11.6			11.8	
Confl. Peds. (#/hr)	5		5		2		5					5
Peak Hour Factor	0.97	0.72	1.00	1.00	0.98	0.77	0.88	0.88	0.71	1.00	0.88	0.78
Heavy Vehicles (%)	0%	7%	1%	0%	2%	0%	7%	0%	12%	12%	0%	4%
Adj. Flow (vph)	212	407	102	56	380	257	68	0	48	137	0	191
Shared Lane Traffic (%)					000							
Lane Group Flow (vph)	212	407	102	56	380	257	68	0	48	137	0	191
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm		Perm	Perm		Perm
Protected Phases		4			8							
Permitted Phases	4	•	4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase										-		
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0		10.0	10.0		10.0
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	26.0	24.0		24.0	24.0		24.0
Total Split (s)	93.0	93.0	93.0	93.0	93.0	93.0	47.0		47.0	47.0		47.0
Total Split (%)	66.4%	66.4%	66.4%	66.4%	66.4%	66.4%	33.6%		33.6%	33.6%		33.6%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0,0		0.0
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	86.5	86.5	86.5	86.5	86.5	86.5	40.5		40.5	40.5		40.5
Actuated g/C Ratio	0.62	0.62	0.62	0.62	0.62	0.62	0.29		0.29	0.29		0.29
v/c Ratio	0.34	0.19	0.09	0.09	0.17	0.20	0.13		0.09	0.28		0.29
Control Delay	14.8	11.8	2.1	11.4	11.6	1.6	37.8		9.8	40.4		6.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	14.8	11.8	2.1	11.4	11.6	1.6	37.8		9.8	40.4		6.1
LOS	14.0 B	В	Α.1	В	В	Α	37.0 D		7.0 A	40.4 D		Α
Approach Delay	ט	11.3	A	D	7.9	H	D	26.2	A	D	20.4	A
Approactibelay		11.3			1.7			20.2			20.4	

	۶	→	•	•	←	•	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			Α			С			С	
Queue Length 50th (m)	28.3	24.2	0.0	6.3	22.3	0.0	14.7		0.0	31.0		0.0
Queue Length 95th (m)	45.2	24.7	7.1	12.6	29.7	4.8	27.0		5.7	50.3		10.3
Internal Link Dist (m)		340.5			383.5			136.5			140.1	
Turn Bay Length (m)	120.0		120.0	120.0		120.0			90.0			90.0
Base Capacity (vph)	622	2194	1156	611	2301	1272	507		524	490		651
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.34	0.19	0.09	0.09	0.17	0.20	0.13		0.09	0.28		0.29

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 12.6 Intersection Capacity Utilization 57.9%

12.6 Intersection LOS: B zation 57.9% ICU Level of Service B

Analysis Period (min) 15

* User Entered Value

Intersection							
Int Delay, s/veh	5.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	†		
Traffic Vol, veh/h	57	82	44	36	59	32	
Future Vol, veh/h	57	82	44	36	59	32	
Conflicting Peds, #/hr	2	4	4	0	0	2	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	64	52	75	43	100	
Heavy Vehicles, %	0	5	11	6	2	6	
Mvmt Flow	60	128	85	48	137	32	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	376	161	173	0	-	0	
Stage 1	157	-	_	-	-	-	
Stage 2	219	-	-	-	-	-	
Critical Hdwy	6.4	6.25	4.21	-	-	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.345	2.299	-	-	-	
Pot Cap-1 Maneuver	629	876	1351	-	-	-	
Stage 1	876	-	-	-	-	-	
Stage 2	822	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	584	870	1346	-	-	-	
Mov Cap-2 Maneuver	584	-	-	-	-	-	
Stage 1	873	-	-	-	-	-	
Stage 2	766	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	11.4		5		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1346	- 752					
HCM Lane V/C Ratio	0.063	- 0.25					
HCM Control Delay (s)	7.9	0 11.4					
HCM Lane LOS	A	A B					
HCM 95th %tile Q(veh)	0.2	- 1					

Intersection							
Int Delay, s/veh	0.7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			ની	¥		
Traffic Vol, veh/h	111	0	0	57	3	1	
Future Vol, veh/h	111	0	0	57	3	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	69	100	100	100	25	25	
Heavy Vehicles, %	6	2	2	8	2	2	
Mvmt Flow	161	0	0	57	12	4	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	161	0	218	161	
Stage 1	-	-	-	-	161	-	
Stage 2	-	-	-	-	57	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1418	-	770	884	
Stage 1	-	-	-	-	868	-	
Stage 2	-	-	-	-	966	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1418	-	770	884	
Mov Cap-2 Maneuver	-	-	-	-	770	-	
Stage 1	-	-	-	-	868	-	
Stage 2	-	-	-	-	966	-	
Ü							
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		9.6		
HCM LOS					A		
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT				
Capacity (veh/h)	796 -	-	1418 -				
HCM Lane V/C Ratio	0.02 -	-					
HCM Control Delay (s)	9.6 -	-	0 -				
HCM Lane LOS	A -	-	A -				
HCM 95th %tile Q(veh)	0.1 -	-	0 -				
70 70 2(1011)	3						

Intersection								
Int Delay, s/veh	8							
Movement	F	EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations		\$				4	Y	
Traffic Vol, veh/h		61	51		43	35	22	62
Future Vol, veh/h		61	51		43	35	22	62
Conflicting Peds, #/hr		0	18		18	0	18	18
Sign Control	F	ree	Free	F	ree	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #		0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		71	31		29	100	29	26
Heavy Vehicles, %		7	2		0	14	5	3
Mvmt Flow		86	165		148	35	76	238
Major/Minor	Ma	jor1		Ma	jor2		Minor1	
Conflicting Flow All		0	0		268	0	536	204
Stage 1		-	-		-	-	186	-
Stage 2		-	-		-	-	350	-
Critical Hdwy		-	-		4.1	-	6.45	6.23
Critical Hdwy Stg 1		-	-		-	-	5.45	-
Critical Hdwy Stg 2		-	-		-	-	5.45	-
Follow-up Hdwy		-	-		2.2	-	3.545	3.327
Pot Cap-1 Maneuver		-	-	1	307	-	500	834
Stage 1		-	-		-	-	839	-
Stage 2		-	-		-	-	707	-
Platoon blocked, %		-	-			-		
Mov Cap-1 Maneuver		-	-	1	287	-	428	809
Mov Cap-2 Maneuver		-	-		-	-	428	-
Stage 1		-	-		-	-	826	-
Stage 2		-	-		-	-	615	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			6.6		15.1	
HCM LOS							С	
Minor Lane/Major Mvmt	NBLn1 E	EBT	EBR	WBL V	VBT			
Capacity (veh/h)	666	-		1287	-			
HCM Lane V/C Ratio	0.472	-		0.115	_			
HCM Control Delay (s)	15.1	-	-	8.2	0			
HCM Lane LOS	С	-	-	A	A			
HCM 95th %tile Q(veh)	2.5	-	-	0.4	-			
_(:::)								

Intersection						
	6.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIK	IVDL	4	<u> </u>	ODIT
Traffic Vol, veh/h	18	76	55	53	91	24
Future Vol, veh/h	18	76	55	53	91	24
Conflicting Peds, #/hr	10	23	23	0	0	10
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	·-	None	-	None		None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	64	33	46	100	100	43
Heavy Vehicles, %	0	3	9	4	2	0
Mvmt Flow	28	230	120	53	91	56
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	444	165	170	0	-	0
Stage 1	142	-	-	-	-	-
Stage 2	302	-	-	-	-	-
Critical Hdwy	6.4	6.23	4.19	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.327	2.281	-	-	-
Pot Cap-1 Maneuver	575	877	1366	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	755	-	-	-	-	-
Platoon blocked, %	F00	0.40	4000	-	-	-
Mov Cap-1 Maneuver	502	843	1339	-	-	-
Mov Cap-2 Maneuver	502	-	-	-	-	-
Stage 1	873	-	-	-	-	-
Stage 2	672	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.8		5.5		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1339	- 785				
HCM Lane V/C Ratio	0.089	- 0.329				
HCM Control Delay (s)	8	0 11.8				
HCM Lane LOS	Α	A B				
HCM 95th %tile Q(veh)	0.3	- 1.4				

Intersection						
Int Delay, s/veh	9.6					
Movement	EBL	EBR	R NBL	NBT	SBT	SBR
Lane Configurations	M				↑	
Traffic Vol, veh/h	76	12	2 0	14	24	0
Future Vol, veh/h	76	12	2 0	14	24	0
Conflicting Peds, #/hr	0	(0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0			-	-	-
Veh in Median Storage, #	# 0			0	0	-
Grade, %	0			0	0	-
Peak Hour Factor	25	25	5 25	100	75	25
Heavy Vehicles, %	4	7	4	4	4	4
Mvmt Flow	304	48	0	14	32	0
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	46	32		0	- Iviajoiz	0
Stage 1	32			-		-
Stage 2	14			_	_	_
Critical Hdwy	7.14	6.24		-		-
Critical Hdwy Stg 1	6.14	0.2-		_	_	_
Critical Hdwy Stg 2	6.14			-		-
Follow-up Hdwy	3.536	3.336		_		_
Pot Cap-1 Maneuver	950	1036		_		0
Stage 1	979	1030	_	_	<u>.</u>	0
Stage 2	1001		. 0	_		0
Platoon blocked, %	1001			_		
Mov Cap-1 Maneuver	950	1036	-	_		_
Mov Cap-2 Maneuver	950	1030		_	_	_
Stage 1	979			_		_
Stage 2	1001			_		_
Olugo Z	1001					
Annroach	ED.		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	10.9		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBT I	EBLn1 SBT				
Capacity (veh/h)	-	961	-			
HCM Lane V/C Ratio	-	0.366				
HCM Control Delay (s)	-					
HCM Lane LOS	-	В				
HCM 95th %tile Q(veh)	-	1.7				

	₩	×	Ž	F	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	^	7	, j	† †	7	Ţ	f)		ň	f)	
Traffic Volume (vph)	107	852	37	47	667	153	36	31	57	74	22	60
Future Volume (vph)	107	852	37	47	667	153	36	31	57	74	22	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	130.0		90.0	115.0		115.0	60.0		0.0	0.0		120.0
Storage Lanes	1		1	1		1	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.97	1.00		0.98	0.99	0.96		0.96	0.98	
Frt			0.850			0.850		0.909			0.893	
Flt Protected												
Satd. Flow (prot)	1810	3762	1538	1863	3725	1615	1667	1604	0	1845	1569	0
Flt Permitted	0.411			0.273			0.702			0.423		
Satd. Flow (perm)	743	3762	1488	507	3725	1576	1160	1604	0	750	1569	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			52			165		58			60	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		405.8			388.5			372.2			450.4	
Travel Time (s)		24.3			23.3			26.8			32.4	
Confl. Peds. (#/hr)	2	21.0	6	6	20.0	2	9	20.0	46	46	02.1	9
Peak Hour Factor	0.76	0.81	0.71	0.98	1.00	0.93	0.45	0.48	0.57	1.00	0.92	1.00
Heavy Vehicles (%)	5%	1%	5%	2%	2%	0%	14%	3%	4%	3%	5%	7%
Adj. Flow (vph)	141	1052	52	48	667	165	80	65	100	74	24	60
Shared Lane Traffic (%)		1002	02	10	007	100	00	00	100	, ,	'	
Lane Group Flow (vph)	141	1052	52	48	667	165	80	165	0	74	84	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	1 01111	6	1 01111	1 01111	2	1 01111	1 01111	4		1 01111	8	
Permitted Phases	6		6	2	_	2	4	•		8		
Detector Phase	6	6	6	2	2	2	4	4		8	8	
Switch Phase				_	_	_	•	•				
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	36.0	36.0	36.0	36.0	36.0	36.0	41.0	41.0		41.0	41.0	
Total Split (s)	89.0	89.0	89.0	89.0	89.0	89.0	41.0	41.0		41.0	41.0	
Total Split (%)	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	31.5%	31.5%		31.5%	31.5%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	
Lead/Lag	0.5	0.5	0.5	0.0	0.5	0.5	0.0	0.5		0.5	0.5	
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Min	Min		Min	Min	
Act Effct Green (s)	102.4	102.4	102.4	102.4	102.4	102.4	14.6	14.6		14.6	14.6	
Actuated g/C Ratio	0.79	0.79	0.79	0.79	0.79	0.79	0.11	0.11		0.11	0.11	
v/c Ratio	0.74	0.75	0.74	0.17	0.73	0.13	0.11	0.71		0.11	0.11	
	5.4	4.8	1.2	4.8	4.1	0.13	74.2	52.3		126.6	23.3	
Control Delay	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0		0.0	0.0	
Queue Delay	5.4		1.2	4.8	4.1	0.0		52.3			23.3	
Total Delay		4.8					74.2			126.6		
LOS Approach Delev	А	A	А	А	A	А	Е	D		F	C	
Approach Delay		4.7			3.5			59.5			71.7	

	_	×	٦	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		Α			А			Е			Е	
Queue Length 50th (m)	8.1	34.1	0.0	2.5	18.9	0.0	21.0	28.3		20.1	6.0	
Queue Length 95th (m)	15.4	47.4	1.9	7.5	32.0	5.5	17.3	17.7		#40.3	21.1	
Internal Link Dist (m)		381.8			364.5			348.2			426.4	
Turn Bay Length (m)	130.0		90.0	115.0		115.0	60.0					
Base Capacity (vph)	585	2964	1183	399	2935	1276	307	468		199	460	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.24	0.35	0.04	0.12	0.23	0.13	0.26	0.35		0.37	0.18	

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 104 (80%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 13.8 Intersection LOS: B
Intersection Capacity Utilization 82.7% ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 20: Cranberry Drive/Davidson Drive & Clover Bar Road

	۶	→	•	•	—	•	•	†	<i>></i>	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	^	7	7	^	7	J.		7	*		7
Traffic Volume (vph)	88	627	70	39	474	24	25	0	53	7	0	66
Future Volume (vph)	88	627	70	39	474	24	25	0	53	7	0	66
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	120.0		115.0	120.0		115.0	0.0		30.0	0.0		45.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	1.00	1.00	*1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95		0.93	1.00		0.91	0.97		0.98	0.96		0.92
Frt									0.850			0.850
Flt Protected												
Satd. Flow (prot)	1810	3689	1900	1759	3689	1759	1900	0	1495	1667	0	1568
Flt Permitted	0.472			0.377								
Satd. Flow (perm)	810	3689	1775	661	3689	1597	1847	0	1467	1593	0	1449
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			72			24			53			125
Link Speed (k/h)		60			60			50			50	.20
Link Distance (m)		810.1			384.2			224.5			173.1	
Travel Time (s)		48.6			23.1			16.2			12.5	
Confl. Peds. (#/hr)	28	10.0	12	3	20.1	19	12	10.2	3	19	12.0	28
Peak Hour Factor	1.00	0.94	0.97	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97	0.53
Heavy Vehicles (%)	5%	3%	0%	8%	3%	8%	0%	0%	8%	14%	0%	3%
Adj. Flow (vph)	88	667	72	39	484	24	25	0	53	7	0	125
Shared Lane Traffic (%)	00	007	,_	0,	101	'				·		120
Lane Group Flow (vph)	88	667	72	39	484	24	25	0	53	7	0	125
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm		Perm	Perm		Perm
Protected Phases	1 01111	4	1 01111	1 01111	8	1 01111	1 01111		1 01111	1 01111		1 01111
Permitted Phases	4	•	4	8	Ü	8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2		2	6		6
Switch Phase		•	•	Ŭ			_		_			
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0		24.0	24.0		24.0
Total Split (s)	88.0	88.0	88.0	88.0	88.0	88.0	52.0		52.0	52.0		52.0
Total Split (%)	62.9%	62.9%	62.9%	62.9%	62.9%	62.9%	37.1%		37.1%	37.1%		37.1%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.5		3.5	3.5		3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.5		2.5	2.5		2.5
Lost Time Adjust (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5		6.5
Lead/Lag	0.0	0.5	0.5	0.0	0.0	0.5	0.0		0.5	0.0		0.5
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max		Max	Max		Max
Act Effct Green (s)	81.5	81.5	81.5	81.5	81.5	81.5	45.5		45.5	45.5		45.5
Actuated g/C Ratio	0.58	0.58	0.58	0.58	0.58	0.58	0.32		0.32	0.32		0.32
v/c Ratio	0.30	0.30	0.30	0.30	0.38	0.03	0.04		0.32	0.32		0.32
Control Delay	15.0	15.4	2.8	13.9	14.4	4.4	32.9		8.6	32.3		
,	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		6.5
Queue Delay												0.0
Total Delay	15.0	15.4	2.8	13.9	14.4	4.4	32.9		8.6	32.3		6.5
LOS Approach Dolou	В	B	А	В	12.0	А	С	1/ /	А	С	7.0	Α
Approach Delay		14.3			13.9			16.4			7.8	

	ᄼ	→	•	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			В			В			А	
Queue Length 50th (m)	11.5	47.5	0.0	4.8	32.5	0.0	5.0		0.0	1.4		0.0
Queue Length 95th (m)	21.3	59.0	6.9	10.9	41.9	4.2	12.1		10.2	5.2		0.0
Internal Link Dist (m)		786.1			360.2			200.5			149.1	
Turn Bay Length (m)	120.0		115.0	120.0		115.0			30.0			45.0
Base Capacity (vph)	471	2147	1063	384	2147	939	600		512	517		555
Starvation Cap Reductn	0	0	0	0	0	0	0		0	0		0
Spillback Cap Reductn	0	0	0	0	0	0	0		0	0		0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0		0
Reduced v/c Ratio	0.19	0.31	0.07	0.10	0.23	0.03	0.04		0.10	0.01		0.23

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 54 (39%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.31

Intersection Signal Delay: 13.7 Intersection Capacity Utilization 52.7% Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Davenport Drive/Summerwood Drive & Lakeland Drive

^{*} User Entered Value

ntersection	
ntersection Delay, s/veh	10.3
ntersection LOS	В

Movement	EBU	EBT	EBR	WBU	WBL	WBT	NBU	NBL	NBR
Lane Configurations		£				ર્ન		N/	
Traffic Vol, veh/h	0	61	51	0	43	35	0	22	62
Future Vol, veh/h	0	61	51	0	43	35	0	22	62
Peak Hour Factor	0.92	0.71	0.31	0.92	0.29	1.00	0.92	0.29	0.26
Heavy Vehicles, %	2	7	2	2	0	14	2	5	3
Mvmt Flow	0	86	165	0	148	35	0	76	238
Number of Lanes	0	1	0	0	0	1	0	1	0
Approach		EB			WB			NB	
Opposing Approach		WB			EB				
Opposing Lanes		1			1			0	
Conflicting Approach Left					NB			EB	
Conflicting Lanes Left		0			1			1	
Conflicting Approach Right		NB						WB	
Conflicting Lanes Right		1			0			1	
HCM Control Delay		10.1			9.9			10.8	
HCM LOS		В			Α			В	

Lane	NBLn1	EBLn1	WBLn1	
Vol Left, %	26%	0%	55%	
Vol Thru, %	0%	54%	45%	
Vol Right, %	74%	46%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	84	112	78	
LT Vol	22	0	43	
Through Vol	0	61	35	
RT Vol	62	51	0	
Lane Flow Rate	314	250	183	
Geometry Grp	1	1	1	
Degree of Util (X)	0.403	0.329	0.258	
Departure Headway (Hd)	4.62	4.729	5.063	
Convergence, Y/N	Yes	Yes	Yes	
Cap	773	754	704	
Service Time	2.68	2.798	3.137	
HCM Lane V/C Ratio	0.406	0.332	0.26	
HCM Control Delay	10.8	10.1	9.9	
HCM Lane LOS	В	В	А	
HCM 95th-tile Q	2	1.4	1	

APPENDIX C

School Zones/Areas Warrants

TABLE 2.1 SCHOOL ZONE INPUT WORKSHEET Davenport Drive

INSTALLATION CRITERION	MAXIMUM POINT VALUE (MPV)	DESCF	RIPTION	WEIGHTING FACTOR (WF)	SCORE (MPV * WF)
School <u>T</u> ype	40	Elementary		1.0	
		Middle / Junior Hig	h	0.4	
		High School		0.2	
		Post Secondary / 0	College / University	0.0	T = 40
		Fully Traversable		1.0	
<u>F</u> encing	20	Partially Traversab	ole	0.5	
		Non-Traversable		0.1	F=10
	20	Urban Land Use	Rural Land Use		
		Local		1.0	
Road <u>C</u> lassification		Minor Collector Collector	Local Collector	0.75 (0.5)	
		Major Collector / Minor Arterial	Arterial	0.25	
		Major Arterial / Expressway	Freeway*	0.0	C = 10
	10	Abuts Roadway		1.0	
Property <u>L</u> ine Separation		Within 50 metres		0.5	
		Further than 50 me	etres	0.0	L=5
School <u>E</u> ntrance	5	Main Entrance / M Entrances	ultiple Secondary	1.0	
		Secondary Entrand	ce	0.6	
		None		0.0	E = 3
<u>S</u> idewalks	5	None or non-school	ol side	1.0	
		School side		0.6	
		Both sides		0.0	S = 0

TOTAL SCORE (sum of T,F,C,L,E and S)

68

^{*} All major provincial highways shall be treated as "Freeway" for the purpose of assignment of the weighting factor for the "Road Classification" under "Rural Land Use".

TABLE 2.1 SCHOOL ZONE INPUT WORKSHEET Davenport Place

INSTALLATION CRITERION	MAXIMUM POINT VALUE (MPV)	DESCF	RIPTION	WEIGHTING FACTOR (WF)	SCORE (MPV * WF)
	40	Elementary		(1.0)	
Cobool Time		Middle / Junior Hig	ıh	0.4	
School <u>T</u> ype		High School		0.2	
		Post Secondary / 0	College / University	0.0	T = 40
		Fully Traversable		1.0	
<u>F</u> encing	20	Partially Traversab	ole	0.5	
		Non-Traversable		0.1	F = 10
	20	Urban Land Use	Rural Land Use		
		Local		1.0	
Road <u>C</u> lassification		Minor Collector Collector	Local Collector	0.75 0.5	
		Major Collector / Minor Arterial	Arterial	0.25	
		Major Arterial / Expressway	Freeway*	0.0	C = 20
	10	Abuts Roadway		1.0	
Property <u>L</u> ine Separation		Within 50 metres		0.5	
•		Further than 50 me	etres	0.0	L=5
School <u>E</u> ntrance	5	Main Entrance / M Entrances	ultiple Secondary	1.0	
		Secondary Entrand	ce	0.6	
		None		0.0	E = 5
	5	None or non-school	ol side	1.0	
<u>S</u> idewalks		School side		0.6	
		Both sides		0.0	S = 0

TOTAL SCORE (sum of T,F,C,L,E and S)

80

^{*} All major provincial highways shall be treated as "Freeway" for the purpose of assignment of the weighting factor for the "Road Classification" under "Rural Land Use".

APPENDIX D

Best Practice Student Loading Process

Best Practice Student Loading Process for Elementary School

Making the student loading operations organized and more efficient will directly affect the pedestrian safety and ultimately affect the delays and queue length of the school related traffic.

- · Make sure there is a clear demarcation of the loading area and of the vehicle bays in the loading area.
- A designated student loading zone should be established along the curb located near the school building
 entrance. The loading zone should have five (5) loading bays and be identified by installing 4-inch wide solid
 white pavement markings. Each bay should be a minimum of 8-feet wide, from the edge of curb, and the
 lengths of 20-feet for the end bays and 28 to 30-feet for the middle bays.
- Each bay should have its own teacher/supervisor/safety patrol assisting children to and from their appropriate vehicles.
- Enforce single lane loading, specifically in the student loading area, to help reduce pedestrian-vehicle conflicts.
- Short term parking spaces should be identified past the student loading zone and near the building entrance.
 This parking can be identified by installing "Visitor Parking" signs at the spaces to be assigned. These spaces are for parents requiring extended periods of time to load. If a parent stops in the loading zone, to wait to load their student, a loading assistant should direct that parent to the Visitor Parking.
- Enforce "No Parking," "No Left Turns," etc. to prevent circumvention of the carpool loading process.
- Pedestrian crosswalks, were necessary, should be located before and/or after the identified student loading zone. Crossing pedestrians will be more visible and can safely cross during the times vehicles are stopped being loading process.

Morning Loading Period

- Have a loading assistant (faculty member, parent volunteer, or identified student patrol) at each student loading bay.
 - It would be the loading assistant's responsibility to assist the student from their vehicle.

Afternoon Loading Period

- Identify each student loading bay using colors or numbers painted on sidewalk and/or traffic cones placed beside each bay.
- Weather permitting, have the children wait in an organized fashion in the loading area or adjacent to it by classes or grade.
- Use a vehicle-student identification system during the pickup process.
 - Parents should display a child identification card placed in the right front corner or sun visor of their vehicle's windshield. The card will indicate a corresponding number to their child in the windshield of their vehicle. This will expedite the flow of traffic, as a teacher/supervisor doesn't have to stop cars to ask whom the parent is picking up and it also assists in safety concerns.
- Use an "Advanced Identification" loading process to better organize and expedite the student loading.
 - This process will require the placement of a loading assistant (faculty member, parent volunteer, or identified student patrol) before the student loading zone. It would be the loading assistant's responsibility to read the child identification card placed in vehicle windshields and determine the name of the next student to be loaded. Once the information is obtained, it is forwarded (typically by walkie-talkie or megaphone) to another loading assistant who has access to the students. By the time the parent reaches the student loading zone, the student is waiting next to the curb ready to be loaded into the vehicle.

Figure 6-4. Example Best Practice Student Loading Process from NCDOT Source: NCDOT