Learner Outcomes:

- Observe and describe patterns of chemical change by:
 - Observing heat generated or absorbed in chemical reactions and identifying examples of endothermic and exothermic reactions.

Key Terms:		
Endothermic	Energy	Produces
Exothermic	Reactants	

Background Information: Chemical reactions involve the forming and breaking of chemical bonds. Each time a bond is broken or formed there is a release or absorption of energy that was or is stored within the bonds. The sum of all of these small energy changes determines whether a reaction will be overall endothermic or exothermic.

Research Question: How is heat generated or absorbed in chemical reactions?

Materials:

Stopwatch 100 mL Beaker Thermometer Plastic scoop (5 mL)

50 mL graduated cylinder Baking soda Vinegar

Steel wool Plastic baggie Index card

Part One - Baking Soda and Vinegar

- 1. Put 20 mL of vinegar into the plastic Zip-Lock baggie. Set the bag into the 100 mL beaker so it doesn't spill. Record the temperature of the vinegar in the bag.
- 2. Measure out 2 scoops of baking soda onto the index card.
- 3. Pour the baking soda into the Zip-Lock with the vinegar and start the timer.

4. Squish the bag to mix the two reactants and record the temperature every 3 seconds for 30 seconds.

Observations:

Title:

Time (s)	0	3	6	9	12	15	18	21	24	27	30
Temp (°C)											

Analysis:

- 1. What was the highest / lowest temperature reached?
- 2. Is this reaction Endothermic or exothermic? Why?
- 3. What has more energy, the chemical reactants or the chemical products?
- 4. How do you know?
- 7. Where is the energy stored in this reaction?

Part Two - Steel Wool and Vinegar

Procedure:

- 1. Add 40 mL of vinegar to a clean, dry 100 mL beaker. Record the temperature of the vinegar.
- 2. Separate a sample of steel wool about the size of a small egg and place it in the beaker with the vinegar. Be sure all the steel wool is covered and start the stopwatch.
- 3. Record the temperature of the steel wool and vinegar mixture every 30 seconds for about 5 minutes. Record your observations.

Observations:

Title:

Time	0	30	60	90	120	150	180	210	240	270	300
(s)											
Temp											
(°C)											

Part Two Lab Questions

- 1. Is this reaction Endothermic or exothermic? Why?
- 2. What has more energy, the chemical reactants or the chemical products?
- 3. How do you know?
- 7. Where is the most energy stored in this reaction?

Conclusion:

Extension:

- 1. List as many possible uses for these types of reactions (endothermic and exothermic) as you can and explain how the change in energy is used.
- 2. Identify 3 examples of endothermic reactions and 3 examples of exothermic reactions that you might encounter in your daily life.